kalman.jl 1.5 KB
Newer Older
Fredrik Bagge Carlson's avatar
Fredrik Bagge Carlson committed
1
"""
2
One dimensional Kalman filter for parameter estimates
Fredrik Bagge Carlson's avatar
Fredrik Bagge Carlson committed
3
4
`kalman(R1,R2,theta, y, A, P)`
"""
Fredrik Bagge Carlson's avatar
Fredrik Bagge Carlson committed
5
function kalman(R1,R2,theta, y, A, P)
Fredrik Bagge Carlson's avatar
Fredrik Bagge Carlson committed
6
7
8
9
10
11
12
    ATP = A'P
    K = (P*A)/(R2+ATP*A)
    P = P - (P*A*ATP)./(R2 + ATP*A) + R1
    yp = (A'theta)[1]
    e = y-yp
    theta = theta + K*e
    return theta, P, e, yp
Fredrik Bagge Carlson's avatar
Fredrik Bagge Carlson committed
13
end
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68



function forward_kalman(y,A,R1,R2, P0)
    na = size(R1,1)
    N = length(y)
    xkk = zeros(na,N);
    Pkk = zeros(na,na,N)
    xkk[:,1] = A\y;
    Pkk[:,:,1] = P0;
    xk = xkk
    Pk = Pkk
    i = 1
    e = y[i]-Hk*xk[:,i]
    S = Hk*Pk[:,:,i]*Hk' + R2
    K = (Pk[:,:,i]*H')/S
    xkk[:,i] = xk[:,i] + K*e
    Pkk[:,:,i] = (I - K*Hk)*Pk[:,:,i]
    for i = 2:N
        Fk = 1
        Hk = A[i,:]'
        xk[:,i] = Fk*xkk[:,i-1]
        Pk[:,:,i] = Fk*Pkk[:,:,i-1]*Fk' + R1
        e = y[i]-Hk*xk[:,i]
        S = Hk*Pk[:,:,i]*Hk' + R2
        K = (Pk[:,:,i]*H')/S
        xkk[:,i] = xk[:,i] + K*e
        Pkk[:,:,i] = (I - K*Hk)*Pk[:,:,i]
    end
    return xkk,xk,Pkk,Pk
end

"""A kalman parameter smoother"""
function kalman_smoother(y, R1, R2)
    na = size(R1,1)
    N = length(y)

    P0 = 100*R1;
    xkk,xk,Pkk,Pk = forward_kalman(y,A,R1,R2, P0)
    xkn = zeros(xkk)
    Pkn = zeros(P)
    for i = N-1:-1:1
        Ai = A[i,:]
        Fk = 1
        Hk = A[i,:]'
        C = Pkk[:,:,i]/Pk[:,:,i+1]
        xkn[:,i] = xkk[:,i] + C*(xkn[:,i+1] - xk[:,i+1])
        Pkn[:,:,i] = Pkk[:,:,i] + C*(Pkn[:,:,i+1] - Pk[:,:,i+1])*C'
    end

    newplot(xkk'); title("x_{k|k}")
    newplot(xkn'); title("x_{k|n}")
    return xkn

end