Homework on convolutional networks

I decided to study the tutorial found here:

https://www.codacy.com/app/hunkim/TensorFlow-Tutorials/file/4564407322/issues/source?

bid=3237149&fileBranchld=3237149
which implements a network on the following form

convolution — relu —» max pool — dropout —
convolution — relu —» max pool — dropout —
convolution — relu -» max pool — dropout —
multiplication — relu — dropout — multiplication

The convolution / multiplication layers consist of unknown weights w1l w2 w3 w4 and w0
with following property

wl: size: 3x3 number: 32

w2: size: 3x3x32 number: 64
w3: size: 3x3x64 number: 128
w4: size: 128x4x4 number: 625
wO: size: 625 number: 10

where size indicates the size of the convolution kernel and number, the number of kernels in the
layer.

The network was applied to the MNIST dataset and was trained using RMSProp with decay and
learning rate parameter.

Initial tests showed what happened to the learning performance when varying these parameters:
Mean test accuracy was evaluated in a randomized test set of 5000 figures.

Conver gence

Performance w.r.t learning rate
behaves as expected. It is a clear
trade off between initial
convergence rate and performance
after convergence.

Mean Test Accuracy

—— | carring rate = 0. 001
0. 0001
0. 01

5 10 15 20 25 3 0 3 5 4 0 4 5 50
i

comver gonce Performance trend w.r.t decay
o — — - - - - was not as strong but it seems that
a smaller learning rate have
similar behavior to that of a large
learning rate, i.e improved initial
convergance rate but decreased
performance after many
iterations.

Mean Test Accuracy

https://www.codacy.com/app/hunkim/TensorFlow-Tutorials/file/4564407322/issues/source?bid=3237149&fileBranchId=3237149
https://www.codacy.com/app/hunkim/TensorFlow-Tutorials/file/4564407322/issues/source?bid=3237149&fileBranchId=3237149

The second part of the homework was to study the weights after training, the figure below
shows the w1l convolution kernels. The convolution kernels deeper inside the network were
to many to present here.

in E-Em.E =
g S=ESE =

=Euiek * E o

My hypothesis is that these kernels try to detect image gradients in various different
directions.

More interesting kernels where found when increasing the size to 9x9 in the first layer, see
figure below.

o o o
I'-

or o B ora

o o e ora

(==]
]

[= =)
L=

2466 2468 2463 2468 2468

o o feora

o0 o feora
JI
o o o f=ra
1
L: |
o =ora
|
== =]
o
== =]
|
== = Y]

c4 68 Z468 24648

-

m

o o e ora
o o B ora
o o B ora

2468 246

? TE
L
6w 16

5 18] |

2468 24686 2468 24648

i

o1 o o fsra

_—__
o o feora
o1 o fera

o0 o B ora

