main.m 4.11 KB
Newer Older
Martin Karlsson's avatar
Martin Karlsson committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
%% Preliminaries
clc; close all; clear all
dmpParams;

% Simulate demonstrated trajectory:
dt = 1/250;
t = linspace(0,10,10/dt)';
traj = max(0,-sin(2*pi*t(1:round(2*end/5))/2.5)); traj = [traj ; traj(end)*ones(50,1)];

% Determine DMP from demonstration:
T_end = length(traj)*dt;
tau =T_end/3; % Yields 95% convergence at the deomnstration time
P = length(traj); % Number of time steps
w = traj2w(traj,dt, tau, c, D, alpha_z, beta_z, alpha_x, n_kernel); % Basis function weights. Used to determine f.
g = traj(end); % DMP goal point.

%% Simulate unperturbed DMP
%Initialize variables
x = 1; % Phase parameter
ydot = 0;
y = zeros(size(traj));
y(1) = traj(1);
y0 = y(1);
yddot_unpert = zeros(size(traj));

% Simulate over time t
for t = 2:2*P
    yddot  = dmp2acc(y0,y(t-1),ydot,g,tau, w, x, c, D, alpha_z, beta_z); % Get acceleration given DMP and states
    ydot = ydot + yddot*dt;
    y(t) = y(t-1) + ydot*dt;
    xdot = -alpha_x*x/tau;    
    x = x + xdot*dt;
    yddot_unpert(t) = yddot;
end
y_unpert = y;


%% Simulate DMP execution with stopping perturbation
%Initialize variables
x = 1; % Phase variable
y = zeros(size(traj));
y(1) = traj(1); % Coupled trajectory
y0 = y(1); % Start position
ya = y; % Actual trajectory
ya_dot = 0;
e = 0; % Low-pass filtered error state
ya_ddot_log = zeros(size(y));
y_ddot_log = zeros(size(y));

% Simulate over time t
for t = 2:2*P
    tau_adapt = tau*(1+(kc*e^2)); % Adaptive time parameter
    ya_ddot = get_ya_ddot_lowgain_ff(ya(t-1), ya_dot, y(t-1), ydot, yddot); % Get reference accceleration for actual trajectory
Martin Karlsson's avatar
Martin Karlsson committed
54
    [ydot, yddot]  = dmp2vel_acc_ss(y0, y(t-1), g, tau_adapt, w, x, dt, alpha_e, c, D, alpha_z, beta_z,ya(t-1),e,kc,tau); % Get coupled acceleration and velocit,y given DMP and states
Martin Karlsson's avatar
Martin Karlsson committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    y(t) = y(t-1) + ydot*dt;
    xdot = -alpha_x*x/tau_adapt;    
    x = x + xdot*dt;
    
    % Stopping perturbation
    ya_dot = ya_dot + ya_ddot*dt;
    if (t > 500 && t < 750)
        ya_dot = 0;
    end
    
    ya(t) = ya(t-1) + ya_dot*dt;
    e_dot = alpha_e*(ya(t)-y(t)-e);
    e = e + e_dot*dt;
    ya_ddot_log(t) = ya_ddot;
    y_ddot_log(t) = yddot;
end
t = cumsum(dt*ones(size(y)));

% Plot results
figure
subplot(211)
plot(t(1:10:end),ya(1:10:end),'b-',t(1:10:end),y(1:10:end),'r--', t(1:10:end),y_unpert(1:10:end),'k-.','LineWidth',2)
legend('y_a','y_c','y_u')
axis([0 8 -.2 1])
xlabel('Time [s]')
ylabel('Position [m]')

subplot(212)
plot(t(1:10:end),ya_ddot_log(1:10:end),'b-',t(1:10:end),y_ddot_log(1:10:end),'r--', t(1:10:end),yddot_unpert(1:10:end),'k-.','LineWidth',2)
legend('ÿ_a','ÿ_c','ÿ_u')
axis([0 8 -20 20])
xlabel('Time [s]')
ylabel('Acceleration [m/s^2]')

%% Simulate DMP execution with moving perturbation
% Initialize variables
x = 1; % Phase variable
ydot = 0;
yddot = 0;
y = zeros(size(traj));
y(1) = traj(1);
y0 = y(1);
ya = y;
ya_dot = 0;
e = 0; % Low-pass filtered error state
ya_ddot_log = zeros(size(y));
y_ddot_log = zeros(size(y));

for t = 2:2*P
    tau_adapt = tau*(1+(kc*e^2)); % Adaptive time parameter
    ya_ddot = get_ya_ddot_lowgain_ff(ya(t-1), ya_dot, y(t-1), ydot, yddot); % Get reference accceleration for actual trajectory
Martin Karlsson's avatar
Martin Karlsson committed
106
    [ydot, yddot]  = dmp2vel_acc_ss(y0, y(t-1), g, tau_adapt, w, x, dt, alpha_e, c, D, alpha_z, beta_z,ya(t-1),e,kc,tau); % Get coupled acceleration and velocit,y given DMP and states
Martin Karlsson's avatar
Martin Karlsson committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    y(t) = y(t-1) + ydot*dt;
    xdot = -alpha_x*x/tau_adapt;    
    x = x + xdot*dt;
    
    % Moving perturbation
    ya_dot = ya_dot + ya_ddot*dt;
    if (t > 500 && t < 750)
        ya_dot = .15;
    end
    
    ya(t) = ya(t-1) + ya_dot*dt;
    e_dot = alpha_e*(ya(t)-y(t)-e);
    e = e + e_dot*dt;
    ya_ddot_log(t) = ya_ddot;
    y_ddot_log(t) = yddot;
end
t = cumsum(dt*ones(size(y)));

% Plot results
figure
subplot(211)
plot(t(1:10:end),ya(1:10:end),'b-',t(1:10:end),y(1:10:end),'r--', t(1:10:end),y_unpert(1:10:end),'k-.','LineWidth',2)
legend('y_a','y_c','y_u')
axis([0 8 -.2 1.5])
xlabel('Time [s]')
ylabel('Position [m]')

subplot(212)
plot(t(1:10:end),ya_ddot_log(1:10:end),'b-',t(1:10:end),y_ddot_log(1:10:end),'r--', t(1:10:end),yddot_unpert(1:10:end),'k-.','LineWidth',2)
legend('ÿ_a','ÿ_c','ÿ_u')
axis([0 8 -20 20])
xlabel('Time [s]')
ylabel('Acceleration [m/s^2]')