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Abstract— We consider the problem of finding an event-based
sampling scheme that optimizes the trade-off between average
sampling rate and control performance in a linear-quadratic-
Gaussian (LQG) control problem setting with output feedback.
Our analysis is based on a recently presented sampled-data
controller structure, which remains LQG-optimal for any choice
of sampling scheme. We show that optimization of the sampling
scheme is related to an elliptic convection–diffusion type partial
differential equation over a domain with free boundary, a
so called Stefan problem. A numerical method is presented
to solve this problem for second order systems, and thus
obtain an optimal sampling scheme. The method also directly
generalizes to higher order systems, although with a higher
computational cost. For the special case of multidimensional
integrator systems, we present the optimal sampling scheme
on closed form, and prove that it will always outperform its
periodic counterpart. Tight bounds on the improvement are
presented. The improved performance is also demonstrated in
numerical examples, both for an integrator system and a more
general case.

Index Terms— Event-based sampling, LQG-optimal control,
sampled-data control, linear reset systems

I. INTRODUCTION

Sampled-data control has a long history of using zero-
order hold (ZOH) actuation and periodic sampling, with a
well-established theoretical framework [1]. However, system
resources such as network bandwidth, energy and computa-
tional power associate sampling and actuation with a cost.
The question then arises how to make more resource-efficient
control implementations. This is where the field of event-
based control has emerged, where sampling and actuation are
triggered only when controlled variables deviate significantly
from their setpoints. Early pioneering work in [2] and [3]
demonstrated the potential of event-based control, and it has
since been a field of much activity [4]–[7].

In event-based control, both the intersample behavior of
the control signal and the sampling scheme are considered
parts of the design problem. For a closed-loop system of the
form in Fig. 1, this corresponds to co-design of the sampler
S, the hold circuit H, the discrete-time controller K̄ and
the sequence of sampling times {ti}i∈N0

. Optimal co-design
of these components is considered a difficult task, even
for the well-studied linear-quadratic-Gaussian (LQG) control
problem. Many previous works have therefore focused on
sub-optimal solutions, several of which are shown to out-
perform their periodic counterparts [8]–[11]. However, these
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Fig. 1. An LTI system G in feedback with a sampled-data controller
consisting of a sampler S, a hold circuitH and a discrete-time controller K̄.
Solid lines represent continuous-time signals, whereas dashed lines represent
discrete-time signals.

works do not consider optimization of the full co-design
and typically assume setups with periodically synchronized
sampling decisions and full state information. To the authors’
knowledge, there has still not been presented an optimal
event-based co-design of controller and sampling scheme for
the continuous-time LQG-problem with output feedback.

Recently, however, a H2-optimal controller structure was
presented in [12], which was shown to be optimal for any
given, uniformly bounded, sequence of sampling times. This
remarkable result was applied to event-based control in [13]
and [14], where in the latter it was proven that the structure
is still LQG-optimal when the sampling times depend on the
controlled variables. This implies that the co-design problem
is separable, and that it remains to find the sampling scheme
that optimizes the performance for a given cost on sampling
effort, e.g., the average sampling rate. In the considered
setup in Fig. 1, the sampling effort represents costly data
transmissions from the sensor to actuator side.

The results in [12] also show that the closed-loop perfor-
mance is fundamentally determined by a linear reset system.
Reset systems in event-based control have been considered
in several works, e.g. [2], [15], [16], and the results in [12]
confirm that they play an important role. In [16, Paper I
& II], a general framework for optimal event-based impulse
control is developed, and we show that this framework is key
in solving the optimal sampling problem.

Our contribution is to derive the optimal event-based
sampling scheme for the controller structure in [12] using
the framework in [16]. We show that the optimal sampling
problem is equivalent to solving a stationary, elliptic, partial-
differential equation (PDE) with free boundary, for which
numerical solution methods can be applied. For general
second-order systems, we present a finite-difference method
for obtaining the optimal sampling scheme numerically. The
proposed method also directly generalizes to higher-order



systems, although at a higher computational cost. For the
special case of n-dimensional integrator systems, we present
a closed-form solution to the optimal sampling problem. The
performance ratio between periodic and optimal event-based
sampling is then shown to lie in the interval [1+ 2

n , 3).

II. PROBLEM FORMULATION

We consider the problem of finding the optimal sampling
scheme for the closed-loop system in Fig. 1. Here, G is a
linear time-invariant (LTI) continuous-time system, with an
n-dimensional realization of the form

G :


ẋ(t) = Ax(t) +Bww(t) +Buu(t),

z(t) = Czx(t) +Dzuu(t),

y(t) = Cyx(t) +Dyww(t).

(1)

The system G is assumed to satisfy the standard assumptions
for the output feedback H2 problem in [17, Sec. 14.5] (but
here we do not assume Dzu and Dyw to be normalized).
The inputs to G are the control signal u and unit-intensity
white noise w. The outputs are the measurement y and the
controlled signal z.

We define the following infinite-horizon LQG cost as the
measure of control performance:

Jz := lim sup
T→∞

1

T
E[

∫ T

0

z(t)ᵀz(t)dt]. (2)

In the case of a linear closed-loop system, (2) can be viewed
as the squared H2 norm. The average sampling rate of the
system is defined as

f := lim sup
T→∞

1

T
E[

∞∑
i=0

1ti≤T ], (3)

where the sum counts the number of sampling times up to
time T . The objective is to solve the optimization problem

min
{ti}

(Jz + ρf), (4)

where ρ ≥ 0 is the per-sample cost, which governs the trade-
off between sampling rate and performance. The optimiza-
tion (4) is performed over the sequence of sampling times,
{ti}i∈N0

, based on knowledge of y(t) for t ≤ ti alone.
The sampled-data controller structure K = HK̄S will be

fixed to the optimal structure from [12], which minimizes
(2) for any sequence {ti}. It will be reviewed next.

A. The Optimal Controller Structure

With no cost of sampling (i.e. ρ = 0), the controller that
minimizes Jz is the continuous-time LQG controller [17, Ch.
14], with the realization{

˙̂x(t) = (A+BuF + LCy)x̂(t)− Ly(t),

u(t) = Fx̂(t),
(5)

where F and L are computed by solving the two algebraic
Riccati equations{

AᵀX +XA+ Cᵀ
zCz − F ᵀ(Dᵀ

zuDzu)F = 0,

F = −(Dᵀ
zuDzu)−1(Bᵀ

uX +Dᵀ
zuCz),{

AY + Y Aᵀ +BwB
ᵀ
w − L(DywD

ᵀ
yw)Lᵀ = 0,

L = −(Y Cᵀ
y +BwD

ᵀ
yw)(DywD

ᵀ
yw)−1.

The minimum cost, γ0 := min Jz , is then [17, Thm. 14.7]

γ0 = Tr(Bᵀ
wXBw) + Tr(CzY C

ᵀ
z ) + Tr(XAY + Y AᵀX).

(6)

Since sampling will always lead to some performance degra-
dation, γ0 is the lower bound on Jz for any sampled-data
controller structure K. The optimal structure is given by the
following theorem:

Theorem 1 ( [12, Thm. 5.1] & [14, Thm. 1]): The opti-
mal achievable performance for the system in Fig. 1 among
all causal sampled-data controllers K for any uniformly
bounded sampling sequence {ti}, possibly dependent on
controlled variables, is

min
K

Jz = γ0 + lim sup
T→∞

1

T
E[

∫ T

0

η(t)ᵀη(t)dt], (7)

where η is the output of a linear reset system H

H :

{
ẋH(t) = AxH(t) + ε(t), xH(ti) = 0,

η(t) = (Dᵀ
zuDzu)

1
2FxH(t).

(8)

The input ε = L(y − Cyxs) is the measurement update of
the Kalman–Bucy filter

ẋs(t) = Axs(t) +Buu(t)− L(y(t)− Cyxs(t)), (9)

operating on the sensor-side measurement y. Furthermore,
xH = xa−xs, where xa is the state vector of an intermittently
reset LQR controller simulating the closed loop on the
actuator side,{

ẋa(t) = (A+BuF )xa(t), xa(ti) = xs(ti),

u(t) = Fxa(t).
(10)

Proof: See proof of Theorem 5.1 in [12] for the original
derivation, and proof of Theorem 3.1 in [14] for the extension
to stochastic disturbances and sampling sequences that are
allowed to depend on controlled variables. The scaling factor
(Dᵀ

zuDzu)
1
2 in (8) is featured here since we do not assume

the normalization Dᵀ
zuDzu = I as in [12].

Remark 1: The optimal controller structure also has a
representation given explicitly in S, K̄ and H, derived in
[12, Corollary 4.3]. It would be considered for practical
implementations, but is less intuitive for analysis.

A block diagram of the optimal controller structure (9)–
(10) is presented in Fig. 2. Naturally, a copy of (10) should
be featured at the sensor side to compute the control signal
u for the Kalman–Bucy filter.

The system H from Theorem 1 describes the inter-sample
degradation compared to the performance of the continuous-
time LQG controller. It is driven by the signal ε, which will
be a white process with intensity LDywD

ᵀ
ywL

ᵀ.
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Fig. 2. The optimal sampled-data controller structure. It features a Kalman–
Bucy filter on the sensor side that intermittently transmits its estimate to an
LQR controller simulating the closed-loop system on the actuator side.

B. The Optimal Sampling Problem

Using (7) in Theorem 1, we can rewrite the original
problem (4) as

min
{ti}

(Jz + ρf) = γ0 + min
{ti}

(JH + ρf),

JH := lim sup
T→∞

1

T
E[

∫ T

0

η(t)ᵀη(t)dt],

i.e., it is sufficient to consider optimization over the linear
reset system in (8). Therefore we construct a sampling
scheme based on the signal xH, φ(xH) : Rn → {0, 1},
where 1 denotes “sample” and 0 denotes “no sample”, i.e.,
{ti} = {t |φ(xH(t)) = 1}. The problem of finding the
optimal sampling scheme is thus

min
φ

(JH + ρf). (11)

III. A FRAMEWORK FOR THE OPTIMAL
SAMPLING PROBLEM

A problem similar to (11) was considered in [16, Paper
I and II], and we will build upon the framework presented
there. It considers optimal event-based impulse control of
LTI systems, driven by a white process with intensity R,
where the system state x is reset to zero at each actuation.
The cost considered in [16] has the form

lim sup
T→∞

1

T
E[

∫ T

0

xᵀ(t)Qx(t)dt] + ρf,

with f and ρ defined as in (3), (4). The state cost matrix
Q is considered a design variable. Note that if we consider
the choice Q = F ᵀDᵀ

zuDzuF , this cost is equivalent to the
one in (11). Furthermore, with R = LDywD

ᵀ
ywL

ᵀ the system
configuration is identical to (8). The framework of [16, Paper
I and II] is thus directly applicable to (11).

A. The Equivalent Value Function Problem

The framework in [16, Paper I and II] is based on intro-
ducing and optimizing bounds on the cost,

¯
J ≤ JH +ρf ≤ J̄ .

The bounds are determined by finding a bounded, C2, value
function V : xH → R, satisfying the path constraints{

1
T (j + E[V (xH(T ))− V (xH(0))]) ≥

¯
J,

1
T (j + E[V (xH(T ))− V (xH(0))]) ≤ J̄,

j =: E[

∫ T

0

xᵀH (t)QxH(t)dt] + ρE[

∞∑
i=0

1ti≤T ].

If such a function V is found for a given sampling scheme,
then the limit T →∞ gives the desired bounds on JH + ρf .
The objective now is twofold; to minimize J̄ with respect
to the sampling scheme and to find a value function V such
that the bounds are tight, i.e.,

¯
J = J̄ . Achieving both means

that we have solved (11). The following theorem specifies
when this is the case.

Theorem 2 ( [16, Paper II, Thm. 1]): Consider the opti-
mal sampling problem in (11). Suppose a bounded, C2,
function V and a constant J satisfy

xᵀHQxH + xᵀHA
ᵀ∇V +

1

2
Tr(R∇2V ) ≥ J, ∀xH ∈ Rn, (12)

ρ ≥ V (xH)− V (0), ∀xH ∈ Rn, (13)

where equality is achieved in at least one of (12) and (13)
for each xH. Then the optimal cost in (11) is J , and

1

T
(j + E[V (xH(T ))− V (xH(0))]) ≥ J. (14)

Equality is achieved in (14) when sampling is triggered on
equality in (13), i.e., an optimal sampling scheme is

φ(xH) =

{
1, V (xH)− V (0) = ρ,

0, otherwise.

Proof: See proof of Theorem 1 in [16, Paper II].
The inequalities (12), (13) can also be formulated as a

stationary convection–diffusion type PDE over a domain
with a free boundary, a so called Stefan problem [18]. Such
problems are usually found in models describing mediums
undergoing phase change, e.g., melting ice.

Let Ω denote the set where equality is attained in (12). On
the boundary, ∂Ω, we have equality in (13), meaning that ∂Ω
is a level set of V . Since V is C2 and constant outside Ω
(equality in (13)), it holds that ∇V = 0 on ∂Ω. We can thus
write (12), (13) as{

xᵀHQxH − J + xᵀHA
ᵀ∇V + 1

2 Tr(R∇2V ) = 0,

V (xH) ≤ ρ+ V (0), ∀xH ∈ Rn,
(15){

V (xH) = ρ+ V (0),

∇V = 0, ∀xH ∈ ∂Ω.
(16)

For fixed values of J , ρ, and V (0), this is a Stefan problem
in V with the free boundary ∂Ω. The first two terms in
(15) describe production, the third convection and the fourth
diffusion. On the free boundary ∂Ω we have both a Dirichlet
and a Neumann condition, given by (16). While PDEs of this
kind generally do not have a closed-form solution, there exist
several numerical solution methods (see e.g., [19], [20]).

B. A Closed-Form Solution for the Integrator Case
In the special case of an n-dimensional integrator system,

there is in fact a closed-form solution to (12), (13).
Theorem 3 ( [16, Paper II, Thm. 2]): For A = 0, the

value function V satisfying (12) and (13) is given by

V (xH) =

{
− 1

4g(xH)2, g(xH) ≥ 0,

0, otherwise,

g(xH) = 2
√
ρ− xᵀHPxH,
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Fig. 3. Examples of the optimal, ellipsoidal, trigger bounds (red, solid) in
the integrator case. The state cost matrix Q (blue, solid) and noise intensity
matrix R (green, dashed) are represented by their respective eigenvectors
scaled according to associated eigenvalues. For all cases ρ = 1 and M =
Nᵀ
π/4

diag(1, 10)Nπ/4, where Nθ is the rotation matrix defined in (24).

which corresponds to the optimal sampling scheme

φ(xH) =

{
1, 2

√
ρ− xᵀHPxH = 0,

0, otherwise.

For R � 0, Q � 0, the matrix P � 0 is the unique solution
of the Riccati-like equation

PRP +
1

2
Tr(RP )P = Q. (17)

The optimal cost is J =
√
ρTr(RP ), where specifically

JH = ρf =
1

2

√
ρTr(RP ). (18)

Proof: All statements but (18) and the uniqueness of
P are proven by insertion into (12) and (13) in Theorem 2.
For a detailed proof, see [16, Paper II].

Remark 2: Positive definiteness of Q and R in (17) is
assured by the standard assumptions on (1), since A = 0
implies R = LDywD

ᵀ
ywL

ᵀ = BwB
ᵀ
w � 0 and Q =

F ᵀDᵀ
zuDzuF = Cᵀ

zCz � 0.
The shapes of the ellipsoidal trigger bounds, illustrated in

Fig. 3, reflect the optimal trade-off between sampling rate
and performance. Directions associated with large eigenval-
ues of the noise intensity matrix R will typically have a
bound moved further away from the origin, sacrificing some
performance to ensure fewer sampling events. The opposite
is true for directions associated with large eigenvalues of the
state cost matrix Q.

Since the Riccati-like equation (17) is nonlinear in P , it
cannot be solved using semi-definite programming. However,
the following result reduces the problem to a scalar search.

Theorem 4: Consider equation (17). Define the matrix
R̃ := Q

1
2RQ

ᵀ
2 � 0, and introduce the decomposition

R̃ = UR̄Uᵀ, UUᵀ = I, R̄ = diag{ri}.

The solution to (17) is then given by

P = Q
ᵀ
2UP̄UᵀQ

1
2 , P̄ = diag{pi},

where

pi = − s

4ri
+

√
s2

16r2i
+

1

ri
, i ∈ {1, ..., n},

and s > 0 is the unique root of the scalar function

h(s) := (n+ 4)s−
n∑
j=1

√
s2 + 16rj .

Proof: The proof is presented in the appendix.
For the integrator case, we can use Theorem 3 to compute

the cost as a function of the average sampling period havg :=
1/f

JH = Jehavg, Je =
[Tr(RP )]2

4
. (19)

With this result, it is interesting to compare how much
optimal event-based sampling improves the performance over
periodic sampling. The cost using periodic sampling is given
by [13, Remark 4]

JH =
1

h

∫ h

0

∫ h−τ

0

‖DzuFe
AσLDyw‖2F dσdτ,

where h = havg is the sampling period. With A = 0 we can
rewrite this as

JH = Jphavg, Jp =
Tr(RQ)

2
, (20)

by noting that ‖DzuFLDyw‖2F = Tr(RQ). Based on (19)
and (20), we can prove that optimal event-based sampling
will always outperform its periodic counterpart for the inte-
grator case.

Theorem 5: Using the optimal sampled-data controller
structure (9), (10), the performance ratio, Jratio := Jp/Je,
between periodic and optimal event-based sampling for the
n-dimensional integrator system is bounded by

1 +
2

n
≤ Jratio < 3, n ≥ 2, (21)

and Jratio = 3 for the special case n = 1. Furthermore, the
bounds in (21) are tight, with equality in the lower bound
when the eigenvalues of the matrix RQ are identical. The
ratio Jratio approaches the upper bound when all but one
eigenvalue of RQ approach zero.

Proof: The proof is presented in the appendix.

C. A Numerical Method for the General Case

A closed-form solution for the general case, A 6= 0,
remains to be found, if it even exists. However, we have
been able to obtain V numerically for the second-order case.
The numerical solution gives some further intuition into the
optimal event-based control strategy.

Consider the the Stefan problem of the form (22)–(23).
Assume that we wish to solve the non-stationary version of
the problem, for some fixed J and with V (0, t) := −ρ, ∀t
(the choice of V (0, t) is not essential, as it only acts as a
reference point). The problem then has the form{

xᵀHQxH − J + xᵀHA
ᵀ∇V + 1

2 Tr(R∇2V ) = ∂V
∂t ,

V (xH, t) ≤ 0, ∀xH ∈ Rn,∀t, (22){
V (xH, t) = 0,

∇V = 0, ∀xH ∈ ∂Ω,∀t. (23)
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Fig. 4. Numerically obtained value function V (surface plot) and corresponding trigger bound ∂Ω (blue, solid) for (a) a double integrator system and (b)
a system with strong cross-coupling of the states. Note that the trigger bound is convex in (a) but non-convex in (b).

A natural idea is to use standard numerical tools for PDE
solving to simulate (22) in discrete time, while at each
time step enforcing the inequality on V . To approximate
the differential operators in (22), we use the backward-
time central-space (BTCS) finite-difference method [21] and
enforce the inequality by assigning V := min(V, 0) at each
time step. This assignment has the effect of moving the free
boundary ∂Ω over time. The simulation is then progressed
until a stopping criterion based on stationarity of V is met.
If stationarity is reached, this means that we have found a
solution satisfying (15), (16) for the specific J , and thus the
optimal trigger bound is given by the resulting boundary ∂Ω.
For further detail, we refer to the supplemental Matlab code1.

The method has been validated using the known results
for the case A = 0 and is successfully reaching a stationary
solution for all second-order systems considered so far.
While it could in principle be applied to higher-order cases
as well, this becomes unwieldy due to the time complexity,
which grows exponentially in n. For second-order systems,
preliminary findings suggest that the trigger bound is convex
and almost ellipsoidal whenever the system states are rela-
tively weakly coupled. An example of this situation is seen
in Fig. 4a, which shows the resulting V and trigger bound
for a double (chain) integrator. However, the optimal trigger
bound is not convex in general, as seen in Fig. 4b, where
V and the optimal trigger bound are presented for a system
with a strong cross-coupling between the two states.

IV. NUMERICAL EXAMPLES

Here we demonstrate the described optimal co-design
of controller structure and event-based sampling through
two numerical second-order examples—one integrator and
one unstable system. We compare the trade-off between
performance Jz and average sampling period havg for three
different controller structures and sampling methods:

(a) Standard zero-order hold LQG using periodic sam-
pling.

(b) The optimal controller structure, (9), (10), using pe-
riodic sampling.

(c) The optimal controller structure, (9), (10), using op-
timal event-based sampling.

1Available at https://gitlab.control.lth.se/marcus/optimal-trigger-bound.git

A. Integrator Example

For the integrator example, A = 0, we consider a second-
order system with the following parameters:

Bw =
[
(R

1
2

dNπ/8)ᵀ 0

]
, Bu = Cy = I,

Cz =
[
(Q

1
2

dNπ/4)ᵀ 0

]ᵀ
, Dyw = Dᵀ

zu =
[
0 I

]
,

where

Rd = Qd =

[
1 0
0 5

]
, Nθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (24)

This choice of Cz and Bw corresponds to

Q = Nᵀ
π/4QdNπ/4, R = Nᵀ

π/8RdNπ/8,

i.e., the corresponding linear reset system H will have asym-
metric cost and noise intensity matrices whose eigenvectors
are not aligned to each other nor the state axes. This ensures
that the integrator states are coupled through the input noise
and controlled output, as to avoid the degenerated case of
two uncoupled first-order integrator processes.

Trade-off curves for (b) and (c) are obtained through (19)
and (20) respectively. For (a) we use the Matlab toolbox
Jitterbug [22].

The resulting trade-off curves are presented in Fig. 5.
Note that the improvement made by going from the sub-
optimal structure (a) to the optimal structure (b) is smaller
than the improvement by going from periodic sampling
(b) to optimal event-based sampling (c). This suggests that
sampling scheme, rather than controller structure, is the main
performance contributor in this example.

B. Unstable Example

For the unstable example we use the following parameters:

A =

[
0 5
5 0

]
, Bw = Cᵀ

z =

[
2.84 0 0 0
−2.77 0.65 0 0

]
,

Bu = Cᵀ
y =

[
9 0

8.95 0.95

]
, Dzu = Dᵀ

yw =

[
0
I

]
,

which correspond to Q = R = I . For (c), we numerically
obtain optimal trigger bounds for different values of J using
the method outlined in Sec. III-C. The resulting trigger
bounds are presented in Fig. 6. Trade-off curves for (c) are
obtained by simulating a sampled version of the system, with
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Fig. 6. Trigger bounds for the unstable example, using J ∈ [5×10−4, 4].

time-step hnom = 10−3, and averaging the cost and sampling
period over the time horizon T = 2000. The time step hnom
is approximately 130 times smaller than the smallest time
constant of the continuous-time LQG closed-loop system.
Note that (c) needs to be simulated in this example, since the
average sampling period havg cannot be determined directly
from V and J . Case (a) is still evaluated using Jitterbug, and
(b) is evaluated using (20).

The trade-off curves are presented in Fig. 7. Also this
example suggests that sampling scheme rather than controller
structure is the main factor for improvement. Note that the
ratio of improvement Jratio is increasing with havg in this
example, whereas it for the integrator Jratio was constant.
This is in line with [2], [15], where similar observations were
made for unstable first-order systems and unstable uncoupled
second-order systems respectively.
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Fig. 7. Trade-off curves for the unstable example, with γ0 = 25.34. With
γ0 as zero-reference, the performance ratio between periodic and event-
based sampling for the optimal controller structure grows from Jratio = 1
at havg = 0 to Jratio ≈ 3.6 at havg = 0.5.

V. CONCLUSION AND FUTURE WORK

Based on the work on event-based impulse control in [16],
we have presented a framework for finding the optimal event-
based sampling scheme for the LQG-optimal sampled-data
controller structure. Solving the optimization problem for the
sampling scheme is equivalent to finding a value function V ,
satisfying a stationary PDE with free boundary. The function
V , and thus the optimal sampling scheme, is available in
closed form for the multidimensional integrator case. The
sampling scheme then corresponds to an ellipsoidal trigger
bound in a linear reset system. Also, a numerical method has
been presented for obtaining V in the second-order general
case. Examples show that the trigger bound is not necessarily
convex in the general case.

Future work will be focused on refining the methods of
obtaining V for higher-order systems. As long as no closed-
form solution is available, more efficient methods for solving
the free boundary problem are required before this is a viable
design method for sampled-data control synthesis. To this
end, it is also important to further investigate properties of
the optimal trigger bound, such as uniqueness, and whether
it is always star-shaped as in all presented examples.
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APPENDIX

Proof of Theorem 4
After the state transform x̄H = UᵀQ

1
2xH, (17) reads

P̄ R̄P̄ +
1

2
Tr(R̄P̄ )P̄ = I, (25)

where P̄ = UᵀQ−
ᵀ
2 PQ−

1
2U . With the ansatz P̄ =

diag{pi}, (25) can be written as

p2i ri +
1

2

n∑
j=1

(pjrj)pi = 1, ∀i ∈ {1, .., n}. (26)

Note that if there exists a solution to (26), then it is the
unique solution to (25). Defining s :=

∑n
j=1(pjrj) > 0

and inserting into (26), we get after some straightforward
calculations

(n+ 4)s−
n∑
j=1

√
s2 + 16rj = 0, s > 0. (27)

Solving (26) is thus equivalent to finding a root of the scalar
function h, defined as the left hand side of (27). Since h
is continuous, with lim

s→0+
h(s) = −∑n

j=1 4
√
rj < 0 and

lim
s→∞

h(s) > 0, existence of a solution to (27) is guaranteed.
Furthermore, this solution will be unique since h is strictly
increasing, with dh

ds > 4 for all s > 0.

Proof of Theorem 5
We have

Jratio = 2
Tr((RP )2 + 1

2 Tr(RP )RP )

[Tr(RP )]2
= 2

Tr((RP )2)

[Tr(RP )]2
+ 1,

where (17) was used in the first equality. Let λ =
[λ1, ..., λi, ..., λn]ᵀ denote the vector of eigenvalues to RP .
Since R � 0, P � 0, we have λi > 0,∀i. Thus Tr(RP ) =∑n
i=1 λi =

∑n
i=1 |λi| = ‖λ‖1. Also, Tr((RP )2) =∑n

i=1 λ
2
i = ‖λ‖22, which gives

Jratio = 1 + 2
Tr((RP )2)

[Tr(RP )]2
= 1 + 2

‖λ‖22
‖λ‖21

.

For the case n = 1, we have ‖λ‖22 = ‖λ‖21 and thus Jratio = 3.
When n ≥ 2, the Cauchy–Schwarz inequality gives

1

n
≤ ‖λ‖

2
2

‖λ‖21
< 1, (28)

from which (21) follows. The lower bound in (28) is attained
when λi are identical for all i, while Jratio approaches the
upper bound when λi → 0 for all but one i. To show that the
same conditions hold for the eigenvalues of RQ, we multiply
(17) with R from the left and let RP = SJ S−1, where J
is the upper triangular Jordan matrix of RP , and S is a
similarity transform. This gives

S(J 2 +
1

2
Tr(J )J )S−1 = RQ,

which means that RQ has the same eigenvalues as
J 2 + 1

2 Tr(J )J . These eigenvalues are given by λ2i +
1/2

∑n
j=1 λjλi, and are identical when, and only when, λi

are identical for all i. Since λi > 0, the eigenvalues also
approach zero when, and only when, λi → 0. Thus the
conditions on RQ are the same as for RP .
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