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Abstract

Biological systems, including human beings, have the innate ability to perform complex tasks in versatile and agile
manner. Researchers in sensorimotor control have tried to understand and formally define this innate property. The
idea, supported by several experimental findings, that biological systems are able to combine and adapt basic units
of motion into complex tasks finally lead to the formulation of the motor primitives theory. In this respect, Dynamic
Movement Primitives (DMPs) represent an elegant mathematical formulation of the motor primitives as stable dynamical
systems, and are well suited to generate motor commands for artificial systems like robots. In the last decades,
Dynamic Movement Primitives (DMPs) have inspired researchers in different robotic fields including imitation and
reinforcement learning, optimal control, physical interaction, and human-robot co-working, resulting a considerable
amount of published papers. The goal of this tutorial survey is two-fold. On one side, we present the existing DMPs
formulations in rigorous mathematical terms, and discuss advantages and limitations of each approach as well
as practical implementation details. In the tutorial vein, we also search for existing implementations of presented
approaches and release several others. On the other side, we provide a systematic and comprehensive review of
existing literature and categorize state of the art work on DMP. The paper concludes with a discussion on the limitations
of DMPs and an outline of possible research directions.
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1 Introduction tool for learning and generation of motor commands. Since
their formulation in the pioneering work from Ijspeert et al.
(Ijspeert et al. 2001, 2002c), DMPs have been successfully
exploited in a variety of applications, becoming de facto the
first approach that novices in the Imitation Learning (IL) field

use on their robots.

How biological systems, like humans and animals, execute
complex movements in a versatile and creative manner?

In the past decades, researchers of neurobiology and motor
control have made a significant effort trying in to answer
this research question and their experimental findings lead
to the formulation of the motor or motion primitives theory.
The motion primitives theory explains the execution of
complex motion with the ability of biological systems of
sequencing and adapting units of actions, the so-called
motion primitives (Mussa-Ivaldi 1999; Flash and Hochner
2005).

Dynamic Movement Primitives (DMPs) have their roots in
the motor control of biological systems and can be seen as a
rigorous mathematical formulation of the motion primitives
as stable nonlinear dynamical systems (Schaal 2006a,b). In
this respect, DMPs represent one of the first attempts to
answer the research question:

1.1 Existing surveys and tutorials

The popularity of DMPs resulted in a large amount of
work that use, modify, or extend the original formulation
of Ijspeert and colleagues. In this paper, we name classical
DMPs the DMP formulation initially presented in (Ijspeert
et al. 2001) and further refined in (Ijspeert et al. 2002¢,b). As
shown in Table 1, some tutorials and surveys already tried to
categorize and review existing work on DMPs.

'Department of Computer Science and Digital Science Center,
University of Innsbruck, Innsbruck, Austria
%Intelligent Robotics Group, Department of Electrical Engineering and

How artificial systems, like (humanoid) robots, can execute
complex movements in a versatile and creative manner?

Beyond their biological motivation, DMPs have a simple
and elegant formulation, guarantee convergence to a given
target, are sufficiently flexible to create complex behaviors,
are capable of reacting to external perturbations in real-time,
and can be learned from data using efficient algorithms.
These properties explain the “success” of DMPs in robotic
applications, where they have established as a prominent
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Table 1. Comparison between existing reviews and tutorial about DMPs and our tutorial survey.

Survey/Tutorial

Topics

Description

(Schaal et al. 2007)

e Classical DMPs
e Online adaptation
e Optimization

A tutorial that provides a unifying view on the two main approaches
used to develop computational motor control theories, namely differential
equations and optimal control. In this work, discrete and rhythmic DMPs
(lispeert et al. 2002c,b) are presented as a computational model of
the motor primitives theory (Mussa-lvaldi 1999) that unifies nonlinear
differential equations and optimal control. The tutorial has a section
dedicated to DMP parameters optimization beyond ILs. Schaal et al.
show how to optimize DMP parameters to minimize various costs
describing, for instance, the total jerk of the trajectory or the end-point
variance.

(ljspeert et al. 2013)

e Classical DMPs
o Generalization

e Online adaptation
e Coupling terms

A tutorial on classical DMPs that presents both discrete and rhythmic
formulations, mostly developed in (ljspeert et al. 2002c,b,a), and
their application in IL and movement recognition. The tutorial also
presents extensions of the classical DMP formulation to prevent high
accelerations at the beginning of the motion, to avoid collisions with
unforeseen obstacles (Pastor et al. 2009), and to generalize both in
space (e.g., reach a different goal) and time (e.g., produce longer/shorter
trajectories).

(Pastor et al. 2013)

o Classical DMPs

e Online adaptation

e Coupling terms

e Impedance learning

A tutorial on classical DMPs that presents both discrete and rhythmic
formulations, mostly developed in (ljspeert et al. 2002¢,b,a). The tutorial
also presents extensions of the classical DMP formulation to avoid
collisions with unforeseen obstacles (Pastor et al. 2009) and to learn
impedance control policies via Reinforcement Learning (RL) (Buchli
et al. 2011b). The key difference between this tutorial and the one from
(ljspeert et al. 2013) is the section dedicated to sensory association
and online, context-aware adaptation of DMP trajectories using the
associative skill memory framework developed in (Pastor et al. 2011;
Pastor et al. 2011).

(Denisa et al. 2016b)

o Classical DMPs
o CMPs

A tutorial on CMPs, a framework developed to generate compliant robot
behaviors that accurately track a reference trajectory. CMPs exploit
classical DMPs to generate the desired kinematic landscape and encode
task-dependent dynamics as a combination of Gaussian basis functions
(torque primitives). The tutorial show how to learn torque primitives from
training data, how to generalize CMPs to new situations, and how to
combine existing CMPs to synthesize new robot motions.

Survey and Tutorial

Topics

Description

This paper

DMP tutorial

e Classical

o Orientation

e SPD

e Joining

e Generalization

e Online adaptation

DMP survey

e (Co-)Manipulation
e Variable impedance
e Physical interaction
o Rehabilitation

e Teleoperation

e Motion recognition

This tutorial survey conducts a wide scan of the existing DMP literature
with the aim of categorizing and presenting the published work in the
field. The main objective of this comprehensive literature review is give
the reader an exhausting overview on DMP related research, on its
major achievements, as well as on open issues and possible research
directions. Our tutorial survey also provides a structured and unified
formulation for different methods developed starting from the classical
DMPs proposed by (ljspeert et al. 2002c,b). We believe that such
formulation contributes to easier the understanding of different methods
and extension that can be found in the literature, clarifying connections
and differences among the existing approaches. The tutorial survey
also provides an analysis on pros and cons of various methods and a
discussion with guidelines for different application scenarios.

e Reinforcement, deep,
and lifelong learning

Schaal et al. (2007) presented the classical DMPs as an
attempt to unify nonlinear dynamical systems and optimal
control theory, i.e., the two prominent frameworks used
to derive computational models of neuro-biological motor
theories (Mussa-Ivaldi 1999; Flash and Hochner 2005).
In their tutorial paper, Ijspeert et al. (2013) presented a
homogeneous formulation of rhythmic and discrete DMPs
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together with some extensions including coupling terms,
generalization to different goal, and online adaptation
for collision avoidance. They also described possible
applications in IL and motion recognition methods. In the
same year, Pastor et al. (2013) published their tutorial on
classical DMPs with a special focus on online adaptation of
the DMP attractor landscape by integrating the perceptual
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Figure 1. The structure of this tutorial survey on DMPs.

information into the action generation process. Later on,
Denisa et al. (2016b) reviewed the so-called Compliant
Movement Primitive (CMP), which was first introduced by
Petri¢ et al. (2014a). CMPs combine classical DMP to
generate the desired kinematic path and torque primitives—
a weighted summation of Gaussian basis functions—to
generate task-specific dynamics. As shown in the review,
CMPs are capable of accurately tracking the kinematic
path in a compliant manner, which makes them well suited
for tasks that require interaction of the robot with the
environment.

However the above-mentioned reviews and tutorials
primarily focused on the methods and advancements within
their respective research group and/or focused on a specific
problem or field of application. On the other hand, the DMPs
related literature is extensive and broad, with contributions
from many research groups that made advancements in
several important fields of application. Therefore, the
proposed survey and tutorial on DMPs aims to scan a wider
range and present a tutorial with unified and structured
formulations for various DMPs methods and advancements
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up to date. This should make it clearer for the users to see the
differences and connections between various methods, and
can contribute to easier application. In addition, we provide
a more comprehensive and categorised survey of all major
DMPs application areas in robotics. This can help to inspire
the readers to apply the DMPs in various areas.

In the tutorial part, we present mathematical formulations,
implementation details, and potential issues of existing DMP
formulations starting from the classical DMPs presented in
(Ijspeert et al. 2002c¢,b) up to recent extensions of DMPs
to Riemannian geometry and Symmetric Positive Definite
(SPD) matrices (Abu-Dakka and Kyrki 2020). In the survey
part, we meticulously review existing literature on DMPs in
a comprehensive and methodological manner by focusing on
the quality and significance of their continuations without
putting a bias on any particular research group. Details on
the systematic review procedure are given as follows.
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1.2 Systematic review process

We preformed am automatic search for documents contain-
ing the string

Dynamic Movement Primitive

in Scopus on 25 November 2020 returned 1223 papers. We
found that Scopus lists papers only from 2004 on. Therefore,
we manually track related work from 2001 (preliminary
work on DMPs) to 2003. We further refined the search on
01 February 2021 to include last minute papers.

We manually inspect all the papers and removed the ones
that do not explicitly use DMPs and that only compare
against DMP in their literature review. The first and foremost
selection criteria were the technical quality of work and the
significance of the contribution with respect the DMP state-
of-the-art prior to the publication of any particular paper. In
other words, we asked the question ’did the paper make a
significant step change in the field?’. Therefore, we discarded
papers that presented similar (or same) ideas multiple times,
or that made insignificant improvements to the state-of-the-
art. If multiple papers presented the same/similar idea, we
included the one with the most comprehensive technical
quality, and if the quality was similar, the next deciding
factors were publication in more prestigious journals/venues
or the most cited ones. This manual selection led to the 276
papers on DMPs (out of a total of 328 references) analyzed
in this work.

1.3 A taxonomy of DMP related research

The systematic review of DMP literature lead to the
taxonomy shown in Fig. 1, which also describes the structure
of this paper. DMPs are placed at the root of the tree and
branch into two nodes, namely the futorial and the survey. In
the tutorial part we present different DMP formulations and
extensions in rigorous mathematical terms.

The tutorial part spans Sections 2 and 3. Section 2
embraces DMPs formulations for discrete and periodic
motions, orientation trajectories, and SPDs matrices.
Section 3 discusses extensions of the DMP formalism
to account for skills generalization, joining of multiple
primitives, online adaptation based on force feedback or
reference velocity. The section ends with a short description
of DMP related formulations.

The survey part spans Sections 4 and 5. Section 4 presents
DMPs integration in larger executive frameworks for manip-
ulation and variable impedance tasks, reinforcement, deep,
and life-long learning. Section 5 presents DMPs in differ-
ent robotic applications including physical interaction, co-
manipulation, rehabilitation, teleoperation, motion recogni-
tion, humanoids and field robotics, and autonomous driving.

The paper ends with a discussion (Section 6) of presented
approaches with the aim of providing, where possible, guide-
lines to select the most suitable DMP approach for specific
needs. We have also collected available DMP implementa-
tions (see Table 4) and contributed to the community with
further open source implementations available at https:
//gitlab.com/dmp-codes—collection. Section 6
terminates with a discussion on open issues and possible
research directions.
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1.4 Contribution overview

Our paper has several key contributions that are summarized
as follows.
Concerning the tutorial part:

e We present the classical DMP formulation and
existing variations of this formulation in a unified
manner with rigorous mathematical terms, providing
implementation details and discussing advantages and
limitations of different approaches (Section 2).

e We describe advanced approaches where DMPs are
integrated into sophisticated control and/or larger
executive frameworks (Section 3).

* We release to the community several implementations
of described approaches. Detailed information on
these code repositories are provided in Table 4 and
Section 6. Moreover, we search for existing open-
source implementations of the presented formulations
and list them in our repository (Section 6.2).

Concerning the survey part:

* We perform a systematic literature search to provide
a comprehensive and unbiased review of the topic
(Sections 4 and 5).

* We categorize existing work on DMPs into different
streams and highlight prominent approaches in each
category (Fig. 1 and Sections 4 and 5).

* We present guidelines to select the the most suitable
approach for different applications, discuss limitations
inherent to the DMP formalism, and highlight open
issues and possible research directions (Section 6).

2 Formulation of DMPs types

In this section, we will provide a complete description of the
standard formulation of DMPs. Specifically, point attractors
formulation—to encode discrete point-to point motions—
in Section 2.1, and cycle attractors formulation—to encode
rhythmic-patterns motions—in Section 2.2. For a better
understanding, we have summarized the key notations and
the used abbreviations in Table 2.

2.1 Discrete DMP

The discrete DMP is used to encode a point-to-point motion
into a stable dynamical system. In the following subsections,
we will go through the formulation and main features of
discrete DMPs starting by the classical one operating in R
space (Section 2.1.1), then passing by Cartesian space—
S® and SO(3)—in Section 2.1.2, and ending by DMP
formulation for SPD space (S'}", ) in Section 2.1.3.

2.1.1 Classical DMP

The classical discrete DMPs were first introduced by Ijspeert
et al. (2002c). A DMP for a single DoF trajectory y
of a discrete movement (point-to-point) is defined by the
following set of nonlinear differential equations (Ijspeert
et al. 2002c, 2013)

Tz = (B:(9 —y) — 2) + f(2), (0
TY = 2, @
TE = Qz, (3)
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Table 2. Description of key notations and abbreviations. Indices, super/subscripts, constants, and variables have the same

meaning over the whole text.

N £ # of nonlinear basis functions
J £ # of joints or Degree of Freedoms (DoFs)
L £ # of demonstrations or DMPs
\% £ # of via-points or via-goals
T £ # of datapoints
m £  dimensions of ST,
{-}a £ subscript for desired value
{}ror {}% £ rotation matrix related variable
{}g £ subscript for goal value
T £ time modulation parameter
T £ time duration
A £ forgetting factor
x £ phase variable
s £ sigmoidal decay phase
P £ piece-wise linear phase
w £ angular velocity
Oy, o} £ joint position, its 1st time-derivative
q,q £ unit quaternion, its 1st time-derivative
f.fq, fr, £q, F+ £ forcing term for different spaces
U, £ basis functions
i £ m x m SPD manifold
M £ a Riemannian manifold
TaM £ atangent space of M at an arbitrary point A
M — TaM, maps an arbitrary point ¥ €

@ = Log,(T) < Miinto g € 77\Mp ’P

» a function transforms Sym™ into R™ using
vece(+) = M ] .

andel’s notation.

k K, K7, K® £ different forms of stiffness gains
M and Z £ mass and inertia matrices
DMP Dynamic Movement Primitive

RL Reinforcement Learning

DoF Degree of Freedom
LWR Locally Weighted Regression
GMR Gaussian Mixture Regression

NN Neural Network

ProMP Probabilistic Movement Primitives

GPR Gaussian Process Regression

EMG Electromyography

VIC Variable Impedance Control

PI? Policy Improvement with Path Integrals

CC-DMP Coordinate Change-DMPs

PoWER Policy Learning by Weighting Exploration with the Returns

AEDMP  AutoEncoded DMP
GPDMP  Global Parametric Dynamic Movement Primitive

i £ index:i=1,2,...,N

j £ index:j=1,2,...,J

l £ index:1=1,2,...,L

v £ ndex:v=1,2,...,V

7 £ index:j=1,2,...,%

n £ dimensions of R™

{-}qor{}? £ quaternion related variable

{34+, {}+or {3t 2 SPD related variable

s Bz Oy @5, g positive gains

Qya; Qgg

ci, hi £ centers and widths of Gaussians

t £ continuous time

r £ amplitude modulation parameter

Y, Y £ trajectory data and its 1st derivative

2,2 £ scaled velocity and acceleration

9, 84 8+ £ attractor point (goal) in different spaces

A B o~ » moving target and delayed goal function in

9.8,and g, g, - differe?lt sp?aces e

o £ intermediate attractor (via-goal)

R,R £ rotation matrix, its 1st time-derivative

w; £ adjustable weights

0 and 9 £ an angle and learnable parameters

Sym™ £ m x m symmetric matrices space

X £ an arbitrary SPD matrix

M £ the mean of {X:}7,

Y = Exp, (o) L TaM > M, maps g € TaMinto X € M
a function transforms R™ into Sym™ usin

i) = Mandel’s notation. Y °

D,DY, DWW 2 different forms of damping gains

F, f¢and t°¢ £ forces and external forces and torques

IL Imitation Learning

SPD Symmetric Positive Definite

RBF Radial Basis Function

GMM Gaussian Mixture Model

GP Gaussian Process

VMP Via-points Movement Primitive

LfD Learning from Demonstration

MoMP Mixture of Motor Primitives

ILC Iterative Learning Control

VILC Variable Impedance Learning Control

CMA-ES Covariance Matrix Adaptation-Evolution Strategies

RBF-NN Radial Basis Function-Neural Network

HRL Hierarchical RL

CNN Convolutional Neural Network

UAV Unmanned Areal Vehicle

where z is the phase variable and z is an auxiliary variable.
Parameters o, and 3, define the behavior of the second order
system described by (1) and (2). With the choice 7 > 0,
o, =45, and a, > 0, the convergence of the underlying
dynamic system to a unique attractor point at y = g,
z =0 is ensured (Ijspeert et al. 2013). Alternatively, the
gains o, and (3, can be learned from training data while
preserving the convergence of the system (Tan et al. 2016).
In the DMP literature, equations (1)—(2), as well as their
periodic counterpart (33)—(34), are called the transformation
system, while (3) (or (35)) is the canonical system. f(x)
is defined as a linear combination of /N nonlinear Radial
Basis Functions (RBFs), which enables the robot to follow
any smooth trajectory from the initial position gy to the final
configuration g

o) — iy wi¥i(z) 4
f(z) SN w) )
U, (x) = exp (—hi (x — ci)2> , ®)
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where c¢; are the centers of Gaussian basis functions
distributed along the phase of the movement and h; their
widths. For a given N and setting 7 equal to the total
duration of the desired movement, we can define c¢; =
exp(— aps), hi = ﬁ and hy = hy_1 where
i=1,...,N. For each DoF, the weights w; should be
adjusted from the measured data so that the desired behavior
is achieved. The selection of the number of weights should
be based on the desired resolution of the trajectory. For
controlling a robotic system with more than one DOF,
we represent the movement of every DoF with its own
equation system (1)—(2), but with the common phase (3) to
synchronize them.

2.1.1.1 Learning the forcing term For a discrete
motion, given a demonstrated trajectory yq(t;), ¢, =
1,...,% and its time derivatives y4(t,) and q(t,), it is
possible to invert (1) and approximate the desired shape fy
as

falty) = 72ja(t;) — az (8= (9 = ya(ty)) — Tga(ty) . (6)
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1 30
s 5/ m& ”& In general, the problem of learning and retrieving f(x)
<05 > 0 can be in principle solved with any regression technique
= § W (Stulp et al. 2013). For instance, Wang et al. (2016) modified

0 30 . A . e w

5 o = o 06 T f(x) in (4) by considering a bias term b;, i.e., w;z +

Time [s] Time [s]
Figure 2. A classical DMP is used to generate a discrete
motion connecting o = 0 and g = 1 (green line in the top left
panel). The training data (black dashed lines) are obtained from
a minimum jerk trajectory connecting o and g in T = 1s and
used to learn the weights w; of 10 Gaussian basis functions
equally distributed in time. The results of the parameters
learning procedure are shown in the bottom right panel. The
exponentially decaying phase variable is used as shown in the
middle right panel. Results are obtained with the open source
implementation available at www-clmc.usc.edu/
software/git/gitweb.cgi?p=matlab/dmp.git.

By stacking each f;(¢;) and w; into the column vectors § =

[fa(t1),..., fa(tz)] " and w = [w1,...,wn]| T, we obtain
the following linear system
Ddw = §, (N
where
\Ill(zl) ‘I’N(xl)
SN, wi(a) SN, Wi(a)
D = : : . (8
\Ifl(:t-y) \IIN(mT)

SN U, (2g) UF

Locally Weighted Regression (LWR) (Atkeson et al. 1997;
Schaal and Atkeson 1998; Ude et al. 2010) is a popular
approach used to update the weights w;. LWR uses the error
between the desired trajectory shape and currently learned
shape and a forgetting factor X to update the weights as

SN U (ze) T

1 P, 1,0, Py

P,== (P, -1 ) ©
A Ao, 'Paip,

w, =w,_1 + (falt)) — go]TWJ,l)PJgoj. (10)

In the previous equations w, = w(t,) and ¢, is the column
vector obtained by transposing the j-th row of @. The initial
value of the parameters is Py = I, wy = 0. A discrete DMP
learned on synthetic data is shown in Figure 2.

LWR has been the standard method to learn the weights of
DMPs and therefore f(x). As an alternative to LWR, (Krug
and Dimitrovz 2013) have shown that learning a forcing
term defined as in (4) can be formulated as a quadratic
optimization problem and efficiently solved.
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b;, and used truncated kernels (¥, vanishes if z — ¢; is
smaller than a threshold). This formulation, called DMP+,
produces more accurate trajectories than the original DMP.
Moreover, a learned trajectory can be modified by updating
only a subset of the weights. Other work focused on using
multiple demonstrations to increase the generalization power
of the learned primitive. To learn a suitable forcing term
from multiple demonstrations, some authors used Gaussian
Mixture Model (GMM) (Yin and Chen 2014; Pervez et al.
2017a) and Gaussian Mixture Regression (GMR) (Cohn
et al. 1996), while others adopted Gaussian Process (GP)
(Fanger et al. 2016; Umlauft et al. 2017) (Rasmussen and
Williams 2006), or exploited a deep Neural Network (NN)
(Pervez et al. 2017b; Pahic et al. 2020) developed originally
in (LeCun et al. 2015).

2.1.1.2 Phase stopping and goal switching The phase
variable x in (3) provides the ability to manipulate time
during the execution of DMP equations. Moreover, DMP
provides the ability to slow-down or even stop the execution
through the phase-stopping mechanism (Ijspeert et al. 2002c)

QT

- 11
1+ aya |7 — vl

T =
Moreover, DMPs provide an elegant way to adapt the
trajectory generation in real-time through goal switching
mechanisms (Ijspeert et al. 2013)
79 = ag(g0 — 9) (12)
DMPs in its standard formulation are not suitable for
direct encoding of skills with specific geometry constraints,
such as orientation profiles (represented in either unit
quaternions or rotation matrices), stiffness/damping and
manipulability profiles (encapsulated in full SPD matrices).
For instance, direct integration of unit quaternions, does not
ensure the unity of the quaternions norm. Any representation
of orientation that does not contain singularities is non-
minimal, which means that additional constraints need to be
taken into account during integration.

2.1.1.3 Alternative phase variables Equation (3)
describes an exponential decaying phase variable that has
been widely used in the DMP literature. The main drawback
of the exponential decaying phase is that it rapidly drops
to very small values towards the end of the motion. This
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“forces” the learning algorithm to exploit relatively high
weights w; to accurately reproduce the last part of the
demonstration (Samant et al. 2016). As an example, in
Figure 3 the exponential decaying phase (brown dot-dashed
line) is very small already after 0.6s, while the expected
time duration of the motion is 7' = 1.

To overcome this limitation, Kulvicius et al. (2011)
propose the sigmoidal decay phase s (green solid line in
Figure 3), obtained by integrating

ase(as /8:)(TT—t)

5= T el 0G0 (13)

where o defines the steepness of s centered at time 1" and
ot is the sampling time. As shown in Figure 3, s =1 for
t < T — §,, where the time J; depends on the steepness «,
and then it decays to s = 0.

The sigmoidal decay in Figure 3 has a tail effect since
it vanishes after T+ 05 s, where 5 depends on the tunable
parameter «,. The piece-wise linear phase [ (blue dashed
line in Figure 3), proposed by (Samant et al. 2016), linearly
decays from 1 to 0 in exactly 7's and then remains constant.
p is obtained by integrating

_1
: T
7'
p 0,

where p(0) = 1 and T is the time duration of the motion.

2.1.2 Orientation DMP

The classical DMP formulation described in Section 2.1.1
applies to single DoF motions. Multidimensional motions
are generated independently and synchronized with a
common phase. In other words, equations (1) and (2) are
repeated for each DoF while the phase variable in (3) is
shared. This works when the evolution of different DoF
is independent, like for joint space or Cartesian position
trajectories. Unlike Cartesian position, the elements of
orientation representations like unit quaternion or rotation
matrix are constrained. In this section, we present approaches
that extend the classical DMP formulation to represent
Cartesian orientations.

2.1.2.1 Quaternion DMP Unit quaternionq =v +u €
83 provides a representation of the orientation of the robot’s
end-effector (Chiaverini and Siciliano 1999). 83 is a unit
sphere in R*, v € R, and u € R3. Abu-Dakka et al. (20152)
rewrote DMP equations (1) and (2) for direct unit quaternion
encoding as follows

p>0

14
otherwise (14)

) = a,(B.2Log (g, *q) —n) +£4(x),  (15)
o1
ri=sn+a, (16)

where g, € 83 denotes the goal orientation, the quaternion
conjugation is defined as @ = v + u = v — u, and * denotes
the the quaternion product

q; ¥ gy = (Vi +up) * (v2 + ug)

= (Vl'VQ — uT1u2) + (V1u2 + vou; +uy X u2).

1 € R3 is the scaled angular velocity w and treated as unit
quaternion with zero scalar (v = 0) in (16). The function
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Figure 4. A unit quaternion DMP is used to generate a discrete
motion connecting q; and g,. The training data (black dashed
lines) are obtained from a minimum jerk trajectory connecting
q; and g, in 7" = 10s and used to learn the weights w; of 20
Gaussian basis functions equally distributed in time. The results
of the parameters learning procedure are shown in the bottom
right panel. The exponentially decaying phase variable is used
as shown in the middle right panel. Results are obtained with
the open source implementation available at
https://gitlab.com/dmp-codes—-collection.

Log?(-) : 8%+ R3 is given as

:emrccos(v)i7 u#£0
Log?(q) = [[ull (17)
000" otherwise,
where || - || denotes £2 norm.

Early attempt to encode unit quaternion profiles using
DMP was presented by Pastor et al. (2011). Unlike Abu-
Dakka et al.’s formulation, Pastor et al.’s does not take into
account the geometry of SO(3) as they just used the vector
part of the quaternion product (gq xq) in (15) instead of
2Log(g, *q) which defines the angular velocity w that
rotates quaternion q into g, within a unit sampling time.

Equation (16) can be integrated as

! @“@) *q(t),

where d; > 0 denotes a small constant. The function
Exp?(-) : R? > 8% is given

q(t+6t)=E (18)

cos(lw])) + sin(|w][) o, w# 0

w
Exp?(w) = llwl]”
otherwise.
(19)
Both mappings become one-to-one, continuously differ-
entiable and inverse to each other if the input domain of the
mapping Log?(-) is restricted to S? except for —1 4+ [000] "
while the input domain of the mapping Exp?(w) should
fulfill the constraint ||w|| < 7 (Abu-Dakka et al. 2015a). An
exemplar unit quaternion DMP is shown in Figure 4.
Phase-stopping (11) can be rewritten as follows

1+[0 00"

QT
. Le— (20)
1+ ay.d(q, q)
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Figure 5. A rotation matrix DMP is used to generate a discrete
motion connecting R; and R4. The training data (black dashed
lines) are obtained from a minimum jerk trajectory connecting
Ri:and R, inT = 10s and used to learn the weights w; of 20
Gaussian basis functions equally distributed in time. The results
of the parameters learning procedure are shown in the bottom
right panel. The exponentially decaying phase variable is used
as shown in the middle right panel.

where
d(q,q) = {
Ude et al. (2014) extended DMP quaternions-based

formulation by rewriting (12) to include goal switching
mechanism.

q *xqy=1+1[0 0 0]

otherwise

2,

2[Log?(q; * @)||,

qu = aququ(gq,new - gq) * 8y (21)

so that g, is continuously changing onto g, ,,,, in real-time.
Equation (21) should be integrated using (19) along with (15)
and (16).

As shown by Saveriano et al. (2019) using Lyapunov
arguments, both the quaternion DMP formulations in (Pastor
etal. 2011) and in (Abu-Dakka et al. 2015a; Ude et al. 2014)
asymptotically converge to the target quaternion g, with zero
velocity.

2.1.2.2 Rotation Matrix DMP In their work on orienta-
tion DMPs, Ude et al. (2014) extended DMPs formulation
in order to encode orientation trajectories represented in the
form of rotation matrices R(t) € SO(3). Therefore, they
rewrote (1) and (2) in the form

) = (8. Log" (RgR ") — ) + fr(2),
R = [n xR,

(22)
(23)
where R, represents the goal orientation. [n]x is a skew
symmetric matrix, such as [n]x = —[n]x. The relation

between the angular velocity and Ist-time-derivative of the
rotation matrix is given by

0 —w, Wy _
W]x = | w. 0 —w;| =RR'. (24)
—Wy Wy 0
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Time [s]

Figure 6. An SPD DMP is used to generate a discrete motion
connecting X; and X,. The training data (black dashed lines)
are obtained from a minimum jerk trajectory connecting X and
X, inT = 100s and used to learn the weights w; of 20
Gaussian basis functions equally distributed in time. The cone
in the upper left corner represents the manifold of SPD data and
includes the geodesic of the SPD profile. The results of the
parameters learning procedure are shown in the bottom right
panel. The exponentially decaying phase variable is used as
shown in the middle right panel. Results are obtained with the
open source implementation available at
https://gitlab.com/dmp-codes—-collection.

The function Log®(-) : SO(3) — R3 is given as

0,0,0]", R=1I
Log(R) = [ ) . (25)
w =6n, otherwise,
trace(R) — 1 1 a2 —7T23
§=arccos | —————— |, n= ——— |13 —T31
2 2sin ()
21 — T12

The generated rotation matrices can be
integrating (23) as follows

obtained by

R(t + 6t) = Exp” (&@X) R(t). (26)
The function Exp”(-) : R?  SO(3) is given as
Exp” (t[w]x) =T+ sin(@)%c‘:‘,}x|
w7
+ (1 — cos(9)) TE[E

where 6(t) = t||w|| express the rotation angle within time ¢.
An exemplar rotation matrix DMP is shown in Figure 5.

2.1.3 SPD matrices

Abu-Dakka and Kyrki (2020) generalized DMP formulation
in order to encode robotic manipulation data profiles
encapsulated in form of SPD matrices. By defining X €
8™, as an arbitrary SPD matrix and E = {t,,X,}’_; as
the set of SPD matrices in one demonstration, where ST o
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defines the set of ™ x m SPD matrices. Afterwards, we can
rewrite (1) and (2) as follows

TO = az(ﬁZVeC(ijwxl(LOg;(J (Xy))) — o)
+ T+(x)7

€ =0,

(28)

(29)

where o = vec(X) is the Mandel representation of the
symmetric matrix X, where X is the time derivative
of Z so that X =& = (Logx, ,(X,))/dt. The function
Logx ,(X;):M+ Tx, ;M maps a point X, in the
manifold M to a point in the tangent spaceA € Tx, , M.
vec(+) is a function that transforms a symmetric matrix into
a vector using Mandel’s notation, e.g., a vectorization of a
2 x 2 symmetric matrix is

a

vec( (Z 2) ) = d
V2b
€ is the vectorization of Z. X, € 8", represents the goal
SPD matrix. vec(Bx x, (Logx (X,))) is the vectorization

(30)

of the transported symmetric matrix Log;(] (Xg4) over the
geodesic from X, to X;. Then we integrat (29) as

K(t 1 ) = Exp (Bxlex(t)(:%at(a(t)))ét) 31
where the function mat(-) is the inverse of wvec(-) and
denotes to the matricization using Mandel’s notation. X e
S, represents the new SPD-matrices-based robot skills.
The function Exp;(]il(A):Tx],lM — M maps a point
A€ ij,l./\/l to a point X, € M, so that it lies on the
geodesic starting from X,_; € 8", in the direction of A.
An exemplar SPD DMP is shown in Figure 6.

Moreover, Abu-Dakka and Kyrki (2020) rewrote (12) for
smooth goal adaptation in case of sudden goal switching as
follows

T8y = agLog‘ng (84)- (32)

so g now is updated continually.

2.2 Periodic DMP
The periodic DMP (sometimes called rthythmic DMP) are
used when the encoded motion follows a rhythmic pattern.

2.2.1 Classical DMP

The classical periodic (or rhythmic) DMPs were first
introduced by Ijspeert et al. (2002b), where they redefined
the second order differential equation system described in
(1) and (2) as follows

2=Q(aB(-y) —2)+ [(9)), (33)
j=Q, (34)
=1, (35)

where () is the frequency and y is the desired periodic
trajectory that we want to encode with a DMP. The main
difference between periodic DMPs and point-to-point DMPs
is that the time constant related to trajectory duration is
replaced by the frequency of trajectory execution (refer
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Figure 7. A classical DMP is used to reproduce a rhythmic
motion (brown solid line in the top left panel). The desired
trajectory is obtained by adding Gaussian noise to

ya = cos (2mt) with ¢ € [0,2]s and computing the numerical
derivatives with §¢ = 0.01 s (black dashed lines). The forcing
term is obtained as the weighted summation of 20 Gaussian
basis equally distributed in time (bottom left panel). The results
of the parameters learning procedure are shown in the bottom
right panel. Results are obtained with the open source
implementation available at www—clmc.usc.edu/
software/git/gitweb.cgi?p=matlab/dmp.git.

to (Ijspeert et al. 2013, 2002b) for details). In addition, the
periodic DMPs must ensure that the initial phase (¢ = 0) and
the final one (¢ = 2) coincide in order to achieve smooth
transition during the repetitions.

Similar to (4), f(¢) is defined with N Gaussian kernels
according to the following equation

_ Zz]\il \I’i((z))wﬂ" 36
/@ SN Wi(g) o
U;(¢) = exp (h(cos (¢ — ¢;) — 1)), (37)

where the weights are uniformly distributed along the phase
space, and 7 is used to modulate the amplitude of the periodic
signal (Ijspeert et al. 2002b; Gams et al. 2009) (if not used,
it can be set to r = 1 (Peternel et al. 2016a)).

Similarly to discrete DMPs, LWR (Schaal and Atkeson
1998) can be used to update the weight to learn a desired
trajectory. In a standard periodic DMP setting (Ijspeert
et al. 2002b; Gams et al. 2009), the desired shape f; is
approximated by solving

patt) = B2 . (5 e - ) )

where y4 is some demonstrated input trajectory that needs
to be encoded. The weights w; can be updated using the
recursive least-squares method (Schaal and Atkeson 1998)
with forgetting factor A based on the error between the
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Table 3. Summary of DMP basic formulations.
Type of movement | Space System of equations Reference Short description
A single DoF, discrete motion
trajectory is encoded into a
. . Egs.  (1)- | linear, second-order dynamical
Z=0z(Pz - - + . . s
R m. B a:(8:(9 —y) = 2) + f(2) (3), (jspeert | system with an additive, non-
T-l{ = et al. 2002c) | linear forcing term. Convergence
TL = 0z T to the desired goal g is ensured by
a vanishing phase variable z.
A quaternion-based orientation
Egs. (15 Fra]ectory (3 DoFs) is enco@ed
. . _ (16), (Ab into a second-order dynamical
s | ™ =a:(B:2Log'(g, *qQ) — n) + fy(z) Datka ot al | System with an additive, non-
T4 = %71 *q © " | linear forcing term. The error def-
2015a) L . .
inition complies with the geome-
try of the unit quaternions space.
Discrete A rotation matrix-based
orientation trajectory (3 DoFs)
is encoded into a second-order
: R T Egs. (22)- dynamical system with an
SO(3)| ™M= a(B.Log"(Rg*R") —n) + fr(x) (23), (Ude ynar y \
R <R etal 2014) additive, non-linear forcing term.
x : The error definition complies
with the geometry of the rotation
matrices space.
An SPD matrices trajectory,
m(m +1)/2 DoFs, is encoded
Egs. (28)- | into a second-order dynamical
s o = aZ(BZvec(]B%lexl(Log;;l (X,))) — o) + F(z) (29), (Abu- s.ystem wit.h an additive, non-
T =0 Dakka and | linear forcing term. The error
Kyrki 2020) | definition complies with the
geometry of the SPD matrices
space.
A single DoF, periodic motion
Egs. (33)- | trajectory is encoded into a
. 35), linear, second-order dynamical
=0 —y) — (
Periodic R Z (@ (8(=y) = 2) + f(9) (Ijspeert system with an additive, non-
v= 2z et al. | linear forcing term. The resulting
Tp=1 2002b) system generates a stable limit
cycle.

desired trajectory shape and currently learned shape

wi(tye1) = wi(ty) + ViPi(tye1)ren(t), (39)
er(ty) = falt;) — wi(tj)r7 (40)
: _ l _ . Pi(tj)27"2

Bultyn) = 3 (Pl(tf) >+ Pt ) @1

The initial value of the parameters is w;(0) = 0 and P;(0) =
1. The forgetting factor determines the rate of weight
changes. Refer to (Schaal and Atkeson 1998) for details on
parameter setting. An exemplar rhythmic DMP is shown in
Figure 7.

The classical periodic DMP described by (33)—-(35) does
not encode the transit motion needed to start the periodic
one. Transients are important in several applications like
humanoid robot walking where usually the first step made
from a rest position is a transient needed to start the
periodic motion. To overcome this limitation, (Ernesti et al.
2012) modify the classical formulation of periodic DMPs
to explicitly consider transients as motion trajectory that
converge towards the limit cycle (i.e., periodic) one.
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2.3 Formulation summary

A summary for the existence DMP formulations mentioned
in the earlier sections is shown in Table 3. The table
shows the variations of the formulation in its standard shape
based on the space that they are applied to. However, the
modifications of this standard shape (e.g., adding a coupling
term) is discussed in the next section as an extension of the
DMP formulations.

3 DMPs extensions
3.1 Generalization

A desirable property of motion primitives is the ability
to generalize to unforeseen situations. In this section,
we present approaches that allow to adapt DMP motion
trajectories to novel executive contexts.

3.1.1

Classical DMPs are time invariant, meaning that time
scaling ¢7 with ¢ > 0 generate topologically equivalent
trajectories (Ijspeert et al. 2013). Using a simple modification
of the transformation system, namely substituting (1) with

Start, goal, and scaling

Tizaz(ﬁz(g_y) _Z)—‘,—(gfy())f(.%'), (42)
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Ijspeert et al. (2013) show that DMP are also scale invariant,
meaning that the scaling of the movement amplitude
¢(g —yo) with ¢ >0 generates topologically equivalent
trajectories. The purpose of the green color used in (42)
is to highlight differences w.rt. (1). Apart from generating
scaled—in time and space—versions of the demonstrated
motion trajectory, classical DMPs also generalize to different
initial/target states. However, the classical formulation—and
its extension in (42)—may exhibit dangerous behaviors like
over-amplification of the trajectory when reaching a different
target and high accelerations when switching to a different
target on-line (Pastor et al. 2009; Ijspeert et al. 2013). To
alleviate the second issue, Ijspeert et al. (2013) replaced
hard goal switches with the smooth switching law as in
(12). However, the over-amplification issue still remains.
Moreover, a DMP that uses (42) fails to learn motions with
the same initial and target states (i.e., g = yo,20 =0 —
y(t) = yo = g V).

In order to remedy those issues, Pastor et al. (2009)

proposed to modify the transformation system as

TZ = Oéz(ﬁz(g - yf(g - UO)‘L + f(‘l)) - Z)a (43)
where the green color is used to highlight differences
between (43) and (1). The most important change in this
formulation is the term (g — yo)x that has several benefits.
It prevents high accelerations at the beginning of the motion
(9g—y—(9g—yo)r =0 for t =0) or when the goal is
close to the initial state. It allows to reproduce motions
with the same initial and target states and it prevents
over-amplifications and trajectory mirroring effects® when
changing the goal. Hoffmann et al. (2009) derived a
multidimensional representation of (43) from the behavior
of the spinal force fields in frogs.

The goal can also change over time and, in this case, the
tracking performance of the DMP mostly depends on the
gains a, and .. As proposed by (Koutras and Doulgeri
2020b), the tracking performance can be improved by
adapting the temporal scaling 7.

Dragan et al. (2015) showed that DMPs solve a trajectory
optimization problem in order to minimize a particular
Hilbert norm between the demonstration and the new
trajectory subject to start and goal constraints. In this light,
DMP adaptation capabilities to different start and goals can
be improved by choosing (or learning) a proper Hilbert norm
that reduces the deformation in the retrieved trajectory.

3.1.2 Via-points

A via-point can be defined as a point in the state space
where the trajectory has to pass. Failing to pass a via-point
may cause the robot to fail the task execution. Therefore,
having a motion primitive representation with the capability
of modulating the via-points is of importance in robotic
scenarios. It is not surprising that researchers have extended
the DMP formulation to consider intermediate via-points in
the trajectory generation process.

Ning et al. (2011, 2012) extend the classical DMP to
satisfy position and velocity constraints at the beginning
and at the end of a sample trajectory. Their approach to
traverse via-points consists of creating a sample trajectory
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by combining locally-linear trajectories connecting the via-
points. This sample trajectory is used to fit a DMP that is
constrained to pass the via-points.

Weitschat and Aschemann (2018) considered each via-
point as an intermediate goal (via-goal) g, forv =1,...,V
to reach. The last via-goal gy corresponded to the target state
of the DMP. In their formulation, they defined a variable goal
as

v
Guia(®) =D V() g0, (44)
v=1

where U, (x) are the Gaussian basis function centered at the
time corresponding to the v—th via-goal. The effectiveness
of the approach is demonstrated in a task were the robot
has to reach a different target while preventing possible self-
collisions of the end-effector with the robot body. To this end,
authors place the via-goals along the trajectory used to learn
the DMP, forcing the generated trajectory to stay close to the
demonstration while reaching the new target.

The problem of generalizing to via-point close (interpo-
lation) and far (extrapolation) from the demonstration is
faced by (Zhou et al. 2019). Their approach, namely Via-
points Movement Primitives (VMPs), combines the benefits
of DMP and Probabilistic Movement Primitivess (ProMPs)
(Paraschos et al. 2013). Authors assumed that the motion
trajectory is generated as

yq;mp(x) = e(x) + fvmp(x); (45)
where x is the phase variable defined as in (3) and the
elementary trajectory e(x) can be defined as the linear
attractor e(x) = (yo — g)x. The shape modulation term
fomp(x) is defined as

N
fvmp(m) = szwz(l’) + €f (46)
i=1

where the Gaussian kernels W;(z) are defined as in (5),
w; are learnable weights, and €, is the Gaussian noise.
As detailed in (Paraschos et al. 2013), learning the
shape modulation term fy,,(x) means Learning from
Demonstrations (LfDs) the prior probability distribution of
the weights w;. Having separated the generated trajectory
into two parts like in (45) allows to adopt different strategies
to pass a via-point y,, at x,. Zhou et al. (2019) proposed to
modify the shape modulation term for interpolation cases—
when the via-point is “close” to the demonstrations. In
extrapolation cases, instead, the elementary trajectory e(x) is
rewritten as the polygonal line connecting ¥, ¥,,, and g. This
approach easily generalizes to the case of multiple via-points.
VMPs are experimentally compared with ProMPs, showing
better performance especially in extrapolation cases.

3.1.3 Task parameters

Reaching a different goal, or passing through via-points, may
not be enough to successfully execute a task in a different
context. Approaches presented in this section adapt the DMP

* As discussed by (Pastor et al. 2009), a transformation system that uses (42)
generates a mirrored trajectory while reaching a new goal gne., every time
the signs of (gnew — yo) and (g — yo) differ.
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Figure 8. Results obtained by applying the zero velocity switch approach to join two DMPs trained on synthetic data. The training
trajectory for the position and the orientation are shown as a black dashed lines in (a)-(b) and (f)-(g) respectively. Results are
obtained with the open source implementation available at https://gitlab.com/dmp-codes—collection.

motion to new situations by adjusting the weights w; of the
forcing term (4), that modifies the entire DMP trajectory.

Weitschat et al. (2013) considered that L demonstrations
are given, each encoded in a different DMP. In order to
generalize, for instance, to a new goal gy, they proposed
to interpolate the weights of nearby DMPs, i.e., DMPs that
reached points around gy,¢.,. In formulas

> Wodo_1
. Vo:do<dmaz

Wnew -
2

Vo:do<dmaz

1 (47)

where o represents the indices of the nearby DMPs for
which it holds that d, < dy,.:. d, is the distance (or,
more generally, a cost) between ¢pe and go, dpaz is the
maximum distance to consider 2 DMPs close. W,eqp =
(W1 news s WNnew) | and Wy = [W1,0, ,wN,o| ' are
the new weights and the weight of nearby DMPs,
respectively.

The approach by Forte et al. (2011, 2012) also assumes
that I demonstrations are given and that each demonstration
is encoded in a different DMP. Further, the authors exploited
GP (Rasmussen and Williams 2006) to learn a mapping
between the query points ¢; for [ =1,..., L (e.g., the goal
of each DMP) and the DMP parameters [wy, g, 7;]. Given
the new query point @,e., Gaussian Process Regression
(GPR) (Rasmussen and Williams 2006) is used to retrieve
the new set of parameters [Wyew, Gnew, Tnew), that can be
used to generate a DMP motion. This approach builds on
previous work (Gams and Ude 2009; Ude et al. 2010) where
raw data from the L demonstrations are stored in memory
and LWR is used to generate new DMP weights. Alizadeh
et al. (2016) extend the approach in (Ude et al. 2010) to
retrieve the DMP weights even when the task parameters are
partially observable. Finally, (Zhou and Asfour 2017) extend
the approach in (Ude et al. 2010) to consider task-specific
costs while learning the mapping between query points and
DMP weights.

Aforementioned approaches follow a 2-steps procedure
where first the shape parameters w are estimated given
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new task parameters and then execute the DMP. Matsubara
et al. (2010, 2011) augmented the forcing term with a
style parameter used to capture human variability across
multiple demonstrations. Stulp et al. (2013) proposed a
1-step procedure where the DMP forcing term (4) is
reformulated to explicitly depend on the task parameters.
Their experiments shows that a 1-step approach gives more
freedom w.r¢. the used regression technique and increase the
generalization performance. Along the same line, Pervez and
Lee (2018) embedded task parameters directly in the forcing
term. Authors proposed to use a mixture of Gaussians (Cohn
et al. 1996) to learn the mapping between the task parameters
(e.g., new goal, height of an obstacle, efc) and the forcing
term. Given a new query task parameter, regression over the
mixture of Gaussians is used to retrieve the forcing term
parameters and generate the DMP motion. The approach is
tested on a variety of tasks including sweeping and stricking
and additionally compared with the approaches presented
by (Ude et al. 2010; Forte et al. 2012; Stulp et al. 2013)
showing better performance especially in extrapolation.

A Mixture of Motor Primitives (MoMP) is proposed in
(Miilling et al. 2010, 2013) and used to generalize table
tennis skills like hitting and batting a ball. MoMP uses an
augmented state that contains robot position and velocity as
well as the meta-parameters of the table tennis task like the
expected hitting position and velocity. The adapted motion
is generated by the weighted summation of L DMPs and the
responsibility of each DMP, representing the probability that
a particular DMP is the correct one for the sensed augmented
state, is also learned from data.

In high DoF systems, like humanoid robots, it is non
trivial to find a relationship between the task and the DMP
parameters. This is especially true when the DMPs are used
to encode joint space trajectories. Bitzer and Vijayakumar
(2009) showed that such a relationship is easier to find in a
latent (lower dimensional) space obtained from training data.
Therefore, they used dimensionality reduction techniques to
find the latent space where to fit a DMP and show that
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interpolation of DMP weights in the latent space results in
better generalization performance.

3.2 Joining multiple DMPs

An important and desired feature of any motion primitive
representation is the possibility to combine basic movements
to obtain more complex behaviors (Schaal 1999). We review
here three prominent approaches developed to smoothly join
a sequence of DMPs. In this tutorial, we name the approach
by Pastor et al. (2009) as velocity threshold, that in (Kober
et al. 2010b) as rarget crossing, and that in (Kulvicius
et al. 2011, 2012) as basis functions overlay. Some of
the presented approaches modify the DMP formulations in
Section 2.1.1 and 2.1.2. The main differences are highlighted
with green text. The 3 approaches have been implemented
in Matlab for both position (Section 2.1.1) and orientation
(Section 2.1.2) DMPs. The source code is included in our
public repository (see Table 4). Results on synthetic data are
shown in Figures 8 to 11.

3.2.1

A properly designed DMP reaches the desired target with
zero velocity and acceleration, i.e., once a DMP is fully
executed the robot comes to a full stop. This also implies that
the velocity “close” to the target is continuously decreasing.
Using this property, Pastor et al. (2009) propose to combine
successive DMPs by simply terminating the current DMP
when the velocity is below a certain threshold and then
starting the following primitive. When executing a single
DMP, it is common practice to initialize its velocity to
zero—the robot is assumed to be still. In principle, this
initialization can be used to sequence multiple DMPs (Xu
and Wang 2004; Lioutikov et al. 2016), but it may generate
discontinuities if the robot does not fully stop in between two
consecutive primitives. To prevent this discontinuities, Pastor
et al. initialized the state of the current DMP with that of the
previous one.

The velocity threshold approach is simple and effective
since it directly applies to the DMP formulations in
Sections 2.1.1 and 2.1.2. For instance, Saveriano et al.
(2019) showed how to join multiple quaternion DMPs (see
Section 2.1.2.1) with the velocity threshold approach.

Results in Figure 8 are obtained when velocity threshold is
applied to merge 2 DMPs separately trained to fit minimum
jerk trajectories (black dashed lines). Figures 8a—8e show the
position and Figures 8f-8j the orientation (unit quaternion)
parts of the motion. The merged trajectory is generated
by following the first DMP until the distance from the
via-point is below 0.01[m] and 0.01 [rad]. As shown in
Figures 8d and 8i, the switch occurs after about 4.7 [s].
Figures 8e and 8j shows that the desired trajectory is
accurately reproduced. More or less accurate trajectories
can be obtained by tuning the distance from the via-
point. However, the value of this distance the time duration
of the generated trajectory—a bigger (smaller) distance
results in a shorter (longer) trajectory. For instance, in the
considered case, the total motion ends after 9.5 [s] while the
demonstration lasts for 10 [s]. Depending on the application,
the time difference may cause failures, therefore, it has to be
taken into account. Finally, the velocity threshold approach
may generate discontinuities if the target of the current DMP

Velocity threshold
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Figure 9. The constant goal, moving target, and delayed goal
obtained obtained with y(0) = 0[m], g = 1[m], § = 0.3[m/s]
(left), and q(0) = 1+1[0,0,0] ", g, = 0+ [1,0,0] ",

@ =1[0.2,0.2,0.2] "[rad/s] (right). The sampling time is

0t = 0.01[s]. Only the scalar part v of the quaternion is shown
for a better visualization.

is far from the demonstrated initial point of the following
primitive.

3.2.2 Target crossing

There exist movements like hitting or batting that are
correctly executed only if the target is reached with a non-
zero velocity. To this end, Kober et al. (2010b) extend the
classical DMP formulation in Section 2.1.1 to let the DMP to
track a target moving at a given velocity. In their approach,
the DMP passes the target with a given velocity exactly after
T seconds. To achieve this, the acceleration in (1) is re-
written as

ri= (1= a)a. (8.0 —y+7(i — 1)) + (), (49)

where 4, is the desired velocity of the moving target g,
which is defined as

-7l

§=3(0) —§ 7). (49)
Ti

3(0) =g -2, (50)
T

By inspecting (49) and (50), and considering that the term
—7In(z)/a, represents the elapsed time if x is the phase
defined in (3), it is possible to show that the moving target §
is designed to reach the goal g after T" seconds, i.e., §(T') = g
(Fig. 9-left). The initial position of the moving target §(0)
is obtained by moving the goal position g for 1" seconds at
constant velocity —ﬁ. High accelerations at the beginning of
the movement are avoided by the pre-factor (1 — ) which is
set to zero at the beginning of the motion (x(0) = 1). The
approach by Nemec and Ude (2012) combines a moving
target and a particular initialization of the subsequent DMP
to ensure continuity of the movement up to second-order
derivatives.

Saveriano et al. (2019) extended this idea to quaternion
DMP. The angular acceleration in (15) is modified as

™) =(1 — r)a(8:2Log!(g, * @)+7(w — w)

51
+f(l(x)a ( )

Saveriano et al. used the multi-dimensional DMP formulation developed
in (Hoffmann et al. 2009) for both position and quaternion DMPs. In this
review paper, we reformulate the merging approaches in (Saveriano et al.
2019) to comply with the formulations in Section 2.1.1 and 2.1.2.1.
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Figure 10. Results obtained by applying the target crossing approach to join two DMPs trained on synthetic data. The training
trajectory for the position and the orientation are shown as a black dashed lines in (a)-(b) and (f)-(g) respectively. Results are

obtained with the open source implementation available at https:

where w is the angular velocity of the moving quaternion
target g, and 2Log?(g, * q) measures the error between
the current orientation q and g,. The pre-factor (1 — z) is
used to avoid high angular accelerations at the beginning of
the motion. The moving target for the quaternion DMPs is

defined as
) +£,00),

. T .
g,(0) = Exp? <—2w) * g4

1
gq = Equ (-T n(:C)C:J

201,

(52)

where g, is the goal quaternion, 7" is the time duration of the
DMP, and the exponential map Exp?(-) is defined in (19).
As shown in Figure 9-right, the moving target g, reaches
the goal orientation after 7" seconds, i.e., §,(7) = g,. This
can be easily verified by considering that the initial value
of the moving target g, (0) is computed by moving the goal
orientation g, for 7" seconds at the desired velocity —w.

The presented rarget crossing approach allows to cross the
target after 7' seconds. Assuming to have two DMPs with
time duration 7' and T respectively, one can join them by
running the first DMP for T seconds and then switching
to the second one. As for the velocity threshold approach,
possible discontinuities at the switching point are prevented
by initializing the state of DMP, with the final state of DMP;.
This procedure can be repeated to join L > 2 consecutive
DMPs.

Results in Figure 10 are obtained when the velocity
threshold is applied for merging 2 separately trained DMPs
to fit the minimum jerk trajectories (black dashed lines).
Figures 10a—10e show the position and Figures 10f-10j
the orientation (unit quaternion) parts of the motion. The
merged trajectory is generated by following the first DMP
for T =5s and then switch to the second one. The
required intermediate velocity is set to 0.01m/s (rad/s
for the orientation) in each direction. The generated
trajectory reaches the goal in 10s, i.e, demonstration
and execution times are the same. As required, the via-
point is crossed at 7'=5s with the desired velocity
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(Fig. 10c and 10h). However, the non-zero crossing velocity
introduce a deformation in the first part of the trajectory
(Fig. 10e and 10j).

3.2.3 Basis functions overlay

The approach by Kulvicius et al. (2011, 2012) combines
multiple DMPs into a complex one, guaranteeing a smooth
transition between the primitives by ensuring that the basis
functions composing f(x) in (4) overlap at the switching
instances. First of all, Kulvicius et al. adopted a sigmoidal
phase variable in (13) instead of the exponentially decaying
one (3). As discussed in Section 2.1.1.3, the sigmoidal phase
is &~ 1 for the large part of the motion which makes it possible
to use smaller forcing terms to reproduce the demonstrations.
On the contrary, the exponential phase is close to zero
already before T's (Fig. 3), which results in larger forcing
terms.
The classical acceleration dynamics in (1) is modified as
Té:az(ﬂz(g_y)_z)+f(5)> (53)
Similarly to target crossing, Kulvicius et al. used a moving
target g in the acceleration dynamics, but called it the delayed
goal function. The g term in (53) is obtained by integrating

5t
T§: T(g_y())? tST
0, otherwise

with §(0) = yo. The delayed goal function in Figure 9 moves
linearly from yg to g in T" seconds and then remains constant,
ie,gt>T)=g.

The non-linear forcing term f(s) is in green in (53)
because it slightly differs from the classical one in (4). f(s)
is defined as

(54)

S wil(t)
POARE (I
)2
Wi (t) = exp (—H)

20?

fs) =
(55)
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Figure 11. Results obtained by applying the basis functions overlay approach to join two DMPs trained on synthetic data. The
training trajectory for the position and the orientation are shown as a black dashed lines in (a)-(b) and (f)-(g) respectively. Results
are obtained with the open source implementation available at https://gitlab.com/dmp-codes—-collection.

where o; is the width and ¢; is the center of the ¢-th basis
function, and s is obtained by integrating (13). The term
t/TT is used in (55) instead of the the phase variable z.
Being 0 < ¢t/7T < 1, the basis functions are equally spaced
between 0 and 1. Finally, o; are the widths of each kernel.
They are constant and depend on the number of kernels.
Having presented the main differences with the canonical
approach, it is possible to focus on how Kulvicius et al.
(2012) solved the problem of joining L > 2 DMPs. In
general, each of the L DMPs has a different time duration
T!, desired target gl, and initial position yé, from which it is
possible to compute the delayed goal functions by integrating

-1 l

) —y), Y TR<t< Y TR

T = k=1 k=1 .
0, otherwise

(56)

Note that, being §'(0) = yo, the acceleration (53) is smooth
at the beginning of the motion. For this reason, the term
(1 — ) used in (48) is not needed in (53).

Assuming that L DMPs have been trained and that each
DMP has N kernels, we can merge them into one DMP as
follows. The centers of the joined DMP are computed as

T (i—1)
Tjoin(N-1)’
i T!(i—1)

Tioin(N—1)

=1

S~

(57)

-1
. )
+ 72— > T*, otherwise
join P}

where T' is the duration of the I-th DMP, and Tjoin =
Zlel T' (duration of the joined motion). The widths of the
joined DMP are computed as

Sl ol T

0; = Tiom (58)
The centers and widths computed in (57) and (58)
respectively overlap at the transition points allowing for
smooth transitions between consecutive DMPs. The weights
of the joined DMP are obtained by stacking the N weights of
the L DMPs. Therefore, the joined DMP has N * L kernels
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and N % L weights. The phase variable (13) is modified to
run for the duration T, of the joint motion.

Saveriano et al. (2019) extended the basis functions
overlay approach to quaternion DMPs. Assuming that a
sequence of L quaternion DMPs is given. The angular
acceleration in (15) is reformulated for each DMP as

= az(ﬁzQLogq(gfI «q) —n) + ffl(s) (59)

where [ indicates the [-th quaternion DMP and ffl(s) is

defined as in (55). The term gé is the quaternion delayed
goal function and it ranges from q'(0) to gfl in T! seconds
(see Fig. 9 (right)). To generate this moving target while
preserving the geometry of S® it is needed that gfl moves
along the geodesic connecting q'(0) to g, Therefore, g/, is
defined as

~1
gl (t + ot) = Exp? <T"’2(t)> 0 60)
where
2 I s !
~1 . FLqu (gq*a(o)) ETRSTSS ZTK
nd (t) - k=1 k=1 .

[0,0,0]T, otherwise

(61)
The angular velocity in (61) is computed for each [. The
term 2Log? (g!, * q'(0)) represent the angular velocity that
rotates ' (0) into gé in a unit time. Note, that the mappings
Log?(-) and Exp?(-) are defined in (17) and (19) respectively.
The delayed goal gfl crosses all the via-goals gfp l=
1,...,L — 1 and then reaches the goal gg.

Results in Figure 11 are obtained when velocity threshold
is applied to merge 2 DMPs separately trained to fit the
minimum jerk trajectories (black dashed lines). Figures 11a—
11e show the position and Figures 11f-11j the orientation
(unit quaternion) parts of the motion. This approach does
not require a switching rule and automatically generates
a smooth trajectory—with continuous velocity as shown
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in Figures 1lc and 1lh—that passes close to the via-
point which favors the overall reproduction accuracy
(Fig. 11e and 11j). However, the distance from the via-point
depends on the weights of the joined primitives and cannot
be separately decided. The trajectory generated with this
approach tend to last longer than the demonstrations. This
is due to the sigmoidal phase that vanishes after T + s
(Fig. 3). Depending on the application, the time difference
may cause failures and has to be taken into account.

3.3 Online adaptation

The standard periodic DMP learning approach approximates
the shape f,;(t) of the input trajectory y, in (38) by changing
the weights of the Gaussian kernel functions (Ijspeert et al.
2013). Updating of the weights is performed in such a
way that the difference between the reference trajectory and
the DMP is reduced at every control step and gradually
throughout the periodic repetitions. However, the DMP can
also be reshaped by some external feedback function to
achieve different functionalities for different applications,
for instance, tasks that require trail-and-error approach
(Kober et al. 2008), obstacle avoidance (Park et al. 2008;
Hoffmann et al. 2009; Tan et al. 2011), coaching (Petri¢
et al. 2014b; Gams et al. 2016) for robots, and adaptation
of assistive exoskeleton behavior (Peternel et al. 2016a).
Alternatively, the frequency of the existing periodic DMPs
can be modulated online (Gams et al. 2009; Petri¢ et al.
2011).

3.3.1

In (Park et al. 2008; Hoffmann et al. 2009; Tan et al. 2011)
the detected obstacle was fitted with a potential field function
to change the shape of the DMP to avoid it. More in details,
Tan et al. (2011) used the potential field to compute a time-
varying goal and modified the resulting DMP trajectory,
while (Park et al. 2008; Hoffmann et al. 2009) added and
extra forcing term to the DMP. Similarly in (Gams et al.
2016) the human arm was fitted with a potential field
function, which was used to reshape the DMP to perform
coaching. The potential field was coupled to the position of
the human hand to make pointing gestures and indicate the
direction in which the robot arm position trajectory should
change:

Robot obstacle avoidance and coaching

i=Qa(B(-y)—2)+Co+f).

The added coupling term C is the obstacle avoidance term
that contains the potential field and is given in a simplified
form for the sake of explanation as:

Co = ds(]|O — yl|) exp(—=¢(O — y)),

where O is the obstacle (or human pointing gesture) and y
is the robot position. Exponential and ¢ functions determine
the potential field, while function d4 controls the distance at
which the perturbation field should start affecting the DMP.
For the full formulation of C and its parameters, see (Gams
et al. 2016). In (Rai et al. 2017) the method was extended to
include generalization of the obstacle avoidance formulation
in (62).

Alternatively, the faulty segment of collision DMP
trajectory can also be directly adjusted online by the human

(62)

(63)
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demonstrator (Karlsson et al. 2017). On the other hand, the
method in (Kim et al. 2015) considers obstacle avoidance as
a constraint of an optimization problem, which modifies the
DMP trajectory to prevent collisions.

3.3.2 Robot adaptation based on force feedback

Similarly as for obstacle avoidance, task dynamics can also
be incorporated into DMP as coupling terms. In (Gams
et al. 2014) task dynamics were coupled on the acceleration
and velocity level of the DMP. The presented method was
utilized for interaction tasks, where the human changed the
behavior of the robot based on the exerted dynamics on the
manipulator.

T2 =a.(B.(g—y) — 2) + Cf + f(),
TY = Z—|—Cf.

(64)
(65)

whereas the force coupling term Cy = ¢F' is defined as
a virtual or measured force F' and ¢ is a scaling factor,
which essentially changes the dynamic behavior of the
DMP, enabling the motion primitive to instantly react to
the coupled force. Later, Zhou et al. (2016b) introduced
a PD controller based coupling term formulation Cpp =
¢(KP(F;— F¢) — DYE®) coupled to the velocity part of
the DMP (65). In the formulation F}; represents the desired
force, F'¢ is the measured force, ¢ is a scaling factor and
K7 and DV are the proportional and derivative gains of the
Proportional Derivative (PD) controller. The coupling term
formulation allows for controlled adaptation of robot motion
to changes in the environment.

In (Kramberger et al. 2018) this approach was extended,
with a force feedback loop coupled to the velocity (2) and the
goal g of the DMP. The outcome of this approach is a similar
behavior as an admittance controller (Villani and De Schutter
2008), with an difference that the execution is directly on the
trajectory generation level.

T2 =0,(8:((g+ Co) —y) — 2) + f(x),
’Ty = Z+Ca'

(66)
(67)

Here C, = ¢(F; — F*) is the first time-derivative of the
admittance coupling term, which changes the velocity and
consequently the integrated coupling term, the position
output of the DMP. The described approach can be used
for Cartesian space motion, where the forces have to be
substituted for desired and measured torques. This approach
can be implemented in robot tasks involving contact with the
environment as well as contact with humans.

3.3.3 Exoskeleton joint torque adaptation

In (Peternel et al. 2016a), human effort was used to provide
the information about the direction in which the assistive
exoskeleton joint torque DMP should change in order to
minimize it. The human was included into the robot control
loop by replacing the error calculation in (40) with the human
effort feedback term U (E):

wi(typ1) = wity)) + Vi Pi(t, 1)U (E), (68)

where FE(t) is the current effort measured by human
muscle activity through Electromyography (EMG) signals®.

#Note that other feedback that measures human effort can be used instead
of EMG, such as joint torque or limb forces.
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Equations (33)-(37) and (41) are used in the original form.
Equations (38)-(40) are not used, since (68) is used to
modulate the weights in (36) instead.

The effort feedback term U (E) closes the loop and acts as
a feedback for adapting the weights of Gaussian kernels that
define the shape of the trajectory. A positive U (F) increases,
while a negative U (F) decreases the values of weights at a
given section of the periodic DMP that encodes joint torque.
If the shape of the DMP does not provide enough assistive
power, the human has to exert effort (i.e., muscle activity) to
produce the rest of the power required to achieve the desired
task under given dynamics. In turn, muscle activity feedback
then increases the magnitude of the DMP until the human
effort term U(E) is minimised. Note that each joint has its
own torque DMP and U(E) term (Peternel et al. 2016a).
After that point, the DMPs do not change unless the task,
dynamics or conditions change. If they change, the human
has to compensate for the change by an additional muscle
activity, which in turn adapts the DMPs to the new required
joint torques.

3.3.4 Trajectory adaptation based on reference velocity

In many LfD scenarios it is desired to modify both the
spatial motion and the speed of the learned motion at
any stage of the execution. Speed-scaled dynamic motion
primitives first presented in Nemec et al. (2013a) are applied
for the underlying task representation. The original DMP
formulation from (1) and (2) were extended by adding a
temporal scaling factor v on the velocity level of the DMP

U(x)TZ = O‘z(ﬁz(g - y) - Z) + f(l‘),
v(x)Ty = 2.

(69)
(70)

Form (69) and (70), it is evident that the velocity term is a
function of phase, and therefore encoded with a set of RBFs
similarly as in (4). This method allows for modification of
the spacial motion as well as the speed of the execution at any
stage of the trajectory execution. The authors demonstrated
the proposed method in a learning scenario, where after
every learning cycle (using Iterative Learning Control (ILC))
a new velocity profile was encoded based on the wrench
feedback, and thus converged to an optimal velocity for the
specific task. Vuga et al. (2016) extended the approach by
incorporating a compact representation for non-uniformly
accelerated motion as well as simple modulation of the
movement parameters.

Later on, in Nemec et al. (2018) the authors extended
the previous approach to also incorporate velocity scaling
of the encoded orientation trajectories represented with unit
quaternions. The outcome of the presented work is a unified
approach to velocity scaling for tasks executed in Cartesian
space. Furthermore, a reformulation of the velocity approach
called AL-DMPs was presented by GaSpar et al. (2018).
In this work they present a method, where the spatial and
temporal components of the motion are separated, by means
of the arc-lenght based on the time parameterized trajectory.
Arc-lenght, based on the differential geometry of curves,
is related to the speed of the movement, given as the time
derivative of the demonstrated trajectory. The approach is
well suited when multiple demonstrations are compared for
extraction of relevant information for learning. Weitschat and
Aschemann (2018) add an extra forcing term to keep the
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velocity within a certain predefined limit. The aim of this
work is to guaranty a safe execution of the robot task when
interacting with humans, as well as providing a framework
for safe interaction in a changing environment where the
robot position and velocity have to change over time. For
a full formulation of the coupling term see (Weitschat and
Aschemann 2018). Additionally, Dahlin and Karayiannidis
(2020) in their work proposed a temporal coupling based
on a repulsive potential, keeping the DMP velocity within
the predefined velocity limits while ensuring the path shape
invariance.

3.4 Alternative formulations

LfD is a wide research area and many different approaches
have been developed to reproduce human demonstrations
(Billard et al. 2016). As already mentioned, the aim of this
tutorial survey is to provide a comprehensive overview of
DMPs research and we intentionally skip the rich literature
in the field of LfD. However, we found some representations
that are closely related to the DMP formulation. This section
briefly reviews them.

Calinon et al. (2009) computed an acceleration command
for the robot in a PD-like form

=K (y,—y)+D"(¥,-7¥).

where K” is a stiffness and DY a damping gain, y
is the measured state of the robot and y its time
derivative (velocity), y, and y, are desired position and
velocity retrieved with GMR. Authors then shown that the
acceleration command ¥ can be seen as a mixture of linear
dynamics, each converging to a certain attractor. Despite
later work like (Kormushev et al. 2010) referred to this
representation as “a modified version” of DMPs there are
significant differences with the DMP formulation properly
highlighted by (Calinon et al. 2012).

Herzog et al. (2016) computed an acceleration command

for the robot from the linear system
y=u=K"(y, ),

where y is the measured state of the robot, y,; is a human
demonstration, and K” is a control gain computed using
the linear-quadratic regulator method. Then, a compact
representation of the control input trajectory u is computed
by means of Chebyshev polynomials. This representation
does not require a vanishing phase variable to ensure
convergence, but the generalization to different start/goal
position requires the application of the linear-quadratic
regulator method to find a new sequence of control inputs.

Regarding periodic motions, (Ajallooeian et al. 2013)
proposed a dynamical system-based framework to learn
rhythmic movements with an arbitrary shape and basin of
attraction. They exploit phase-based scaling functions to
represent the mapping between a known, base limit cycle
and a desired periodic orbit. The basic limit cycle can be,
for example, the one generated by a periodic DMPs, which
makes the approach of (Ajallooeian et al. 2013) a more
general formulation of periodic primitives.
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4 DMPs integration in complex frameworks

This section reviews approaches where DMPs have
been integrated into bigger executive frameworks. We
categorize these approaches into five main research areas,
namely grasping and manipulation, impedance learning,
reinforcement learning, deep learning, and incremental and
life-long learning

4.1 Manipulation tasks

Successfully grasping an object is the first step towards
robotic manipulation. Performing a grasping requires a
(visual) perception of the environment to locate the object to
grasp and decide the grasping points based on its geometry.
In this setting, even small uncertainties may cause the object
to drop and the grasp to fail. To improve the robustness of
vision driven grasping, Kromer et al. (2010a) augmented
DMPs with a potential field based on visual descriptors
that adapts hand and finger trajectories to the object’s
local geometry. This grasping strategy was integrated in
a hierarchical control architecture where the upper level
decides where to grasp the object and the lower level locally
adapted the motion to robustly grasp the object (Kromer
et al. 2010b). Stein et al. (2014) proposed a point cloud
segmentation approach based on convexity and concavity of
surfaces. The approach is particularly suited to recognize
object handles and enables a robot to automatically grasp
object.

The ability of grasping and using tools is also desirable
to perform daily-life manipulation. In this respect, (Guerin
et al. 2014) proposed the so-called tool movement primitives
that transform the demonstrations in a tool affordance frame.
The result is a motion that generalize to different tool
poses and to tools that share the same affordance(s). Li
and Fritz (2015) considered tool usage with low-cost, non-
dexterous grippers and propose a framework to learn bi-
manual strategies for tool usage and compensate for the lack
of dexterity. Bi-manual robotic manipulation is a challenging
task that requires precise coordination between the hand
movements and adherence to the spatial constrains. Thota
et al. (2016) developed a DMP-based control framework for
bi-manual manipulation that ensures time synchronization of
the two hands while being robust to spatial perturbations and
goal changes.

Beyond the object grasping, everyday manipulation
requires a precise execution of complex movements. Often
such a complex movements are hard to encode into a single
motion primitive, but they can be conveniently split into
simpler motions (e.g., reach and grasp) that can be properly
sequenced and executed (Fig. 12).

The possibility of exploiting DMPs as the building blocks
of complex tasks was investigated in (Ramirez-Amaro et al.
2015; Caccavale et al. 2018, 2019). In these works, a human
teacher demonstrated a relatively complex task consisting
of several actions performed on different objects. The
demonstration was then automatically segmented into M
basic motions used to fit A/ DMPs. While Ramirez-Amaro
et al. (2015) exploit semantic rules (e.g., , reach an object
with a knife means cut) to infer high-level human activities,
Caccavale et al. built a hierarchical structure to schedule
the execution of the complex task by selecting the proper
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Figure 12. An example of hierarchical task decomposition and
motion primitives sequencing from (Agostini et al. 2020).

DMP for the current executive context. They used kinesthetic
teaching and verbal cues (open/close gripper commands) to
provide task demonstrations. Lemme et al. (2014) organize
segmented task demonstrations into a motion primitives
library learned from self-generated trajectory patches. They
also introduced a mechanism to remove unused skills and
update the library. Kinesthetic teaching and haptic feedback
were also used by Eiband et al. (2019) to segment and
recognize basic motions or skills, and to build a tree
describing geometric relationships—Iike reference frames
and goal poses—between consecutive skills. At run time, the
robot performed haptic exploration to locate objects in the
scene and update the skill tree. The transformations in the
skill tree were then used to define initial and goal pose of
the DMPs and execute the task. Finally, Wu et al. (2018)
integrated DMPs into a dialogue system with speech and
ontology to learn or re-learn a task using natural interaction
modalities.

Collecting demonstrations becomes an issue of kinesthetic
teaching or marker-based motion trackers cannot be used.
The latter requires an expensive sensor infrastructure that
is hard to build in real world scenarios like factory floors.
Kinesthetic teaching needs torque controlled/collaborative
robots that are still uncommon in industrial scenarios. To
remedy this issue (Mao et al. 2015) exploited a low-
cost RGB-D camera and track the human hand using the
markerless approach proposed by (Oikonomidis et al. 2011).
Collected data were then segmented into basic motions and
used to fit DMPs.

Described approaches assumes that human teachers
always provide consistent and noiseless task demonstrations.
Ghalamzan E. et al. (2015) encoded noisy demonstrations
into a GMM and computed a noise free trajectory
using GMR. The noise free trajectory was then used
to fit a DMP that generalized to different start, goal,
and obstacle configurations. Niekum et al. (2012, 2015)
designed a framework that learns from from unstructured
demonstrations by segmenting the task demonstrations,
recognizing similar skills, and generalizing the task
execution. Interestingly, a user study on 10 volunteers
conducted by (Gutzeit et al. 2018) showed that existing
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strategies for segmentation and learning are sufficiently
robust to enable automatic transfer of manipulation skills
from humans to robots in a reasonable time. Finally, some
work (DeniSa and Ude 2013a,b; Denisa and Ude 2015)
exploited transition graphs and trees to embed parts of
a trajectory and search algorithms to discover sequence
of partial parts and generate motions that have not been
demonstrated.

Approaches that rely on a hierarchical, tree-like structure
to represent the task that has limited task generalization
capabilities. Lee and Suh (2013) used probabilistic inference
and object affordances to infer the adequate skill that
can handle uncertainties in the executive context. Beetz
et al. (2010) learned stereotypical task solutions from
observation and used task planning and symbolic reasoning
to execute novel mobile manipulation tasks. A generative
learning framework was proposed by (Worgotter et al.
2015) to augment the robot’s knowledge-base with missing
information at different level of the cognitive architecture,
including symbolic planning as well as object and action
properties. (Paxton et al. 2016) used task and motion
planning to generalize the execution of complex assembly
tasks and proposed an learning by demonstration approach
to ground symbolic actions. (Agostini et al. 2020) performed
task and motion planning by combining an object-centric
description of geometric relations between objects in the
scene, a symbol to motion hierarchical decomposition
depending on tree consecutive actions in the plan, and the
LfD approach developed in (Caccavale et al. 2019) (Fig. 12).
A manipulation task was described at three different levels
by (Aein et al. 2013). The top-level provides a symbolic
descriptions of actions, objects, and their relationships. The
mid-level uses a finite state machine to generate a sequence
of action primitives grounded by the lower level. A common
point among these approaches is that they use DMP to
execute the task on real robots.

4.2 \Variable impedance learning control

Impedance control can be used to achieve complaint
motions, in which the controller resembles a virtual spring-
damper system between the environment and robot end-
effector (Hogan 1985). Such approach permits smooth,
safe, and energy-efficient interaction between robots and
environments (possibly humans). A standard model for such
interaction is defined as

My, = Kf(}’g - ¥ — Dz}S’t + £,
Tory = K (Log®(R,R: ")) — DV w; + &,

(71)
(72)

where (71) and (72) correspond to translational and
rotational cases respectively, 2T, Kf7 and Df are the
mass, stiffness and damping matrices, respectively, for
translational motion, while Z, K? ,and Dl/v are the moment
of inertia, stiffness and damping matrices, respectively, for
rotational motion. R, Ry € S O(3) are rotation matrices and
correspond to desired rotation goal and actual orientation
profile of the end-effector, respectively. f; and ¢ represent
the external force and torque applied to the robot end-
effector.

In fact, VIC plays an important role when a robot needs
to interact with any environment in order to avoid high
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Figure 13. General control scheme of Variable Impedance
Control (VIC) and DMP.

impact forces and damage for the environment or the
robot (i.e., change to low stiffness)Ajoudani et al. (2012);
Abu-Dakka et al. (2018); Peternel et al. (2018a). On the
other hand, it is important in rejecting unexpected and
unpredictable perturbations from the environment to achieve
a desired position tracking precision (i.e., change to high
stiffness) Yang et al. (2011). In addition, it is also important
in coordination of human-robot collaborative movements
Peternel et al. (2017b). However, a robotic system still needs
to learn how to adapt such VIC to unseen situations while
avoiding hard-coding. Such paradigm of learning is called
Variable Impedance Learning Control (VILC). Interested
readers can refer to our recent survey on VILC (Abu-Dakka
and Saveriano 2020).

In this review, we will mention some of the works that
integrate DMP with VIC in a VILC framework. Figure 13
shows a simple generic example where DMP is integrated in
a VIC control scheme.

Buchli et al. (2011a) proposed one of the earliest
approaches that integrates DMP with Policy Improvement
with Path Integrals (PI?) algorithm (Theodorou et al. 2010)
to learn movements (position and velocity presented by
DMP) while optimizing impedance parameters. Later the
authors exploited a diagonal stiffness matrix and expressed
the variation (time derivative) of each diagonal entry as

kﬁj,t:aj ()\j—r(ﬁj+€j,t)7kl9j,t)v jil,...,J,

(73)
where j indicates the j-th joint, ky, ¢ is the stiffness of
joint j, €;, is a time-dependent exploration noise, each
A; is a vector of N Gaussian basis functions, and 9;
are the learnable parameters for joint j. The stiffness
parameterization in (73) is also linear in the parameters and
PI? can be applied to find the optimal policy. Later, authors
used PI? to learn VIC in deterministic and stochastic force
fields (Stulp et al. 2012a). Nakanishi et al. (2011) proposed a
method that optimizes a periodic motion a long with a time-
varying joint stiffness.

(Basa and Schneider 2015) introduced an extension to
DMP formulation by adding a second nonlinear function to
cope with elastic robots as follow

Té=a.(B:(9 —y) —2) + f(@) + f2, (74)
where f> is defined as (4) but without the phase variable x.
The main purpose of f; is to compensate the gravitational
influence on the moved DoF at the end of the movement
time and beyond. Differently, Haddadin et al. (2016) used
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optimal-control to execute near-optimal motion of elastic
robots.

Nemec et al. (2016) proposed a cooperative control
scheme that enables dual arm robot to adapt its stiffness
online along to the executed trajectory in order to provide
accurate evolution. (Umlauft et al. 2017) used GP along with
DMPs (as proposed in (Fanger et al. 2016)) to predict the
trajectories. During the execution, their admittance controller
adapts both stiffness and damping online. The energy-tanks
passivity-based control method has been integrated with
DMPs to enforce passivity in order to stably adapt to contacts
in unknown environments by adapting the stiffness online
(Shahriari et al. 2017; Kramberger et al. 2018; Kastritsi et al.
2018).

Methods in (Peternel et al. 2014, 2018b,a; Yang et al.
2018, 2019; Bian et al. 2019) designed different multi-modal
interfaces to let the human to explicitly teach an impedance
behavior to the robot. Most of them combined EMG-
based variable impedance skill transfer with DMP-based
motion sequence planning, inheriting the merits of these
two aspects for robotic skill acquisition. Hu et al. (2018)
used Covariance Matrix Adaptation-Evolution Strategies
(CMA-ES) to update the parameters of DMPs and variable
impedance controller in order to reduce the impact in during
the robot motion in noisy environments. Dometios et al.
(2018) integrated a Coordinate Change-DMPs (CC-DMP)
with a vision-based motion planning method to adapt the
reference path of a robot’s end-effector and allow the
execution of washing actions.

Travers et al. (2016, 2018) proposed a shape-based
compliance controller for the first time in locomotion,
by implementing amplitude compliance on a snake robot
moving in complex environment with obstacles. Their
approaches allow a snake-like robots to blindly adapt to such
complex unstructured terrains thanks to their proprioceptive
gait compliance techniques

Recently, an adaptive admittance controller is proposed
(Wang et al. 2020) which integrates GMR for the extraction
of human motion characteristics, DMP to encode a
generalizable robot motion, and a RBF-NN-based controller
for trajectory-tracking during the reproduction phase.

Novel LfD approaches explicitly take into account that
training data are possibly generated by certain Riemannian
manifolds with associated metrics. Abu-Dakka and Kyrki
(2020) reformulated DMPs based on Riemannian metrics,
such that the resulting formulation can operate with SPD data
in the SPD manifold. Their formulation is capable to adapt
to a new goal-SPD-point.

Recently, biomimetic controller has been integrated with
DMPs (Zeng et al. 2021) in order to learn and adapt
compliance skills.

4.3 Reinforcement Learning (RL)

In RL, an agent tries to improve its behavior via trial-and-
error by exploring different strategies (actions) and receiving
a feedback (reward) on the outcome of its actions. Actions
a are drawn from a policy (s, a) that represent a mapping
between states s and actions a. The goal of RL is to
find an optimal policy 7* that maximizes the cumulative
expected reward, i.e., the sum of expected rewards over a
possibly infinite time interval. When the agent is a robot
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performing tasks in the real world the state and actions
spaces are inherently continuous. Moreover, the robotic
agent is affected by imperfect (e.g., noisy) perception and
inaccurate models (e.g., contacts). Finally, performing a
large amount of interactions with the real word (rollouts) is
expensive and possibly dangerous. As discussed by (Kober
et al. 2013), robotic specific challenges require specific
solutions to make the RL problem feasible.

4.3.1

One possibility is to use parameterized policy and use RL
to search for an optimal, finite set of policy parameters.
In this respect, DMPs have been widely used as policy
parametererization. The general idea is shown in Figure 14.
More in details, (Peters and Schaal 2008a,b) showed that
various policy gradient and actor-critic RL approaches can
be effectively applied to improve robotic skills parameterized
as DMPs. Other research focused on developing policy
search algorithms specifically for parameterized policies.
Inspired by stochastic optimal control, Theodorou et al.
(2010) proposed Policy Improvement with Path Integrals
(PI?) which is an application of path integral optimal control
to DMPs. PI> and DMPs have been successfully applied
in several domains including VILC Buchli et al. (2011a,b)
and in-contact tasks (Hazara and Kyrki 2016), grasping
under state estimation uncertainties (Stulp et al. 2011), bi-
manual manipulation (Zhao et al. 2020), and robot-assisted
endovascular intervention (Chi et al. 2018). Kober and Peters
(2011) derived from expectation-maximization the so-called
Policy Learning by Weighting Exploration with the Returns
(PoWER). PoWER and DMPs have been successfully
applied to perform highly dynamic tasks including ball-
in-a-cup Kober and Peters (2011) and pancake flipping
Kormusheyv et al. (2010).

DMPs as control policies

4.3.2 Limit the search space

Even with parameterized policies the number of rollouts
needs to search for optimal policy parameters may become
large, especially for robots with many DoFs. Dimensionality
reduction techniques can be exploited to perform policy
search in a reduced space (Colomé and Torras 2014). The
effectiveness of this approach was demonstrated in the
challenging task of clothes (i.e., soft tissues) manipulation
(Colomé and Torras 2018). IL arises as an effective approach
to policy initialization and to speed up policy search by
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reducing the number of rollouts (Kober and Peters 2010).
In this respect, Kober et al. (2008, 2010a) augmented
DMPs with a perceptual coupling term and propose to
initialize the DMP via human imitation and to refine the
motor skill via RL. IL can be eventually combined with
dimensionality reduction (Tan and Kawamura 2011) and
several rollouts can be performed firstly in simulation
(Cohen and Berman 2014) to further speed up the policy
search. When multiple demonstrations are given, one can
learn a mapping between policy parameters and query
points (e.g., , goal positions) and use the mapping to
generalize to new situations (Section 3.1.3). This strategy
was used by Nemec et al. (2011, 2012, 2013b) to provide
a good initial policy for a new situation which is then
further refined using RL. Being the mapping estimated
using example query points, the search space can be
effectively constrained within query points making the policy
search more efficient. Vuga et al. (2015a,b) combined this
approach with a different DMP formulation to optimize
the velocity of execution. The approach was tested on
diverse tasks including pouring water in a cup, where it
prevented the water to split from the cup during the motion.
Schroecker et al. (2016) provided demonstrations in the
form of soft via-points (Section 3.1.2) which reduce the
search space to the neighborhood of the taught via-points.
Multiple demonstrations were used by (Reinhart and Steil
2014, 2015) to build a parameterized skill memory that
connects low-dimensional skill parameterization to motion
primitive parameters. This low-dimensional embedding is
then leveraged for efficient policy search. Instead of learning
a mapping from task to policy parameters, Queiller et al.
(2016) used data from the rollouts to incrementally learn
a parametric skill (bootstrapping) and used it to generate a
good initial policy for a new task.

4.3.3 DMPs generalization and sequencing

Instead of using generalization to provide a better initial
policy, some researchers exploit RL to improve and
generalize the motion primitive. (André et al. 2015) adapted
DMP policies to walk on sloped terrains. Miilling et al.
(2010) generalized to new situations using a mixture of
DMPs. In their approach, RL was used to estimate the shape
parameters as well as to estimate the optimal responsibility
of each DMP. (Miilling et al. 2013) used episodic RL
to estimate meta-parameters like the temporal and spacial
interception point of the ball and the racket typical of table
tennis tasks. Lundell et al. (2017) used parameterized kernel
weights and RL to search for optimal parameters, while
(Forte et al. 2015) augmented the given demonstration using
RL-based state space exploration to autonomously expand
the robot’s task knowledge. Metric RL was exploited by
(Hangl et al. 2015) to smoothly switch between learned DMP
policies and execute a task in new situations.

RL can be also applied to sequence multiple motion
primitives and perform more complex task; a successful
strategy when the robot has to perform, for instance,
a manipulation task (Section 4.1). To sequence multiple
primitives it is also of importance to learn the goal of each
motion. Tamosiunaite et al. (2011) used continuous value
function approximation to optimize the goal parameters
of a DMP used to perform a pouring task. Kober et al.
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(2011, 2012) learned a meta-parameter function that maps
the current state to a set of meta-parameters including goal
and duration of the movement. Instead of separating shape
and goal learning into different processes, (Stulp et al. 2011;
Stulp et al. 2012b) extended PI?> to simultaneously learn
shape and goal of a sequence of DMPs.

4.3.4 Skills transfer

Learned skills can be potentially transferred across different
tasks to speed up the learning process and increase
robot autonomy. To this end, Fabisch and Metzen (2014)
considered the case where the robot can actively choose
which task to learn to make the best progress in learning.
The process of actively selecting the task was considered as a
non-stationary bandit problem for which suitable algorithmic
solution exist while intrinsic motivation heuristics were
exploited to reward the agent after the selection. (Cho et al.
2019) defined the complexity of a motor skill based on
temporal and spatial entropy of multiple demonstrations
and used the measured complexity to generate an order for
learning and transferring motor skills. Their experimental
findings provided useful guidelines for skill learning and
transfer. In short, humans have to demonstrate, when
possible, the most complex task and then the robot is able to
transfer the motor skills. Vice versa, if demonstrations are not
given, it is more effective to start learning simple skills first
and then transfer the simpler skills to more complex tasks.

4.3.5 Learning hierarchical skills

RL often lacks scalability to high dimensional continuous
state and action spaces. To remedy this issue, hierarchical
RL exploits a divide et impera approach by decomposing a
RL problem into a hierarchy of sub-tasks in order to reduce
the search space. Different levels in the hierarchy represent
information at different time and/or spatial scale.

Stulp and Schaal (2011) proposed to represent different
options as DMPs to sequence. PI> was extended to optimize
shape and (sub-)goal of each DMP at different levels of
temporal abstraction. In particular, the shape was adjusted
based on the cost up to the next primitive in the sequence,
while the sub-goal considers the cost of the entire sequence
of two DMPs. Layered direct policy search in (End et al.
2017) did not rely on a set of predefined sub-policies and/or
sub-goals, but instead used information theoretic principles
to uncover a set of diverse sub-policies and sub-goals.

Reducing the number of rollouts required to discover
optimal policies is also important in Hierarchical RL (HRL).
As already mentioned, IL is a valuable option to find
good initial policies. However, there are applications like
manipulation with multi-fingered robotics hands for which
it is hard or impossible to provide expert demonstrations.
To make policy search more efficient, Ojer De Andres et al.
(2018) used HRL where the upper-level considers discrete
action and state spaces to search for optimal finger gaiting
and synchronization among the fingers. This information
was passed to the lower-level where rhythmic DMPs and
PI? generated continuous commands for the fingers. Another
possibility to increase data-efficiency is to use model-
based approaches for RL. Colome et al. (2015) exploited
a friction model to improve a DMP policy and manipulate
soft tissues (a scarf). A model-based HRL approach was
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proposed by (Kupcsik et al. 2017) for data-efficient learning
of upper-level policies that generalize well across different
executive contexts. Finally, (Li et al. 2018) proposed a hybrid
hierarchical framework where the higher-level computes
optimal plans in Cartesian space and converts them to
desired joint targets using an efficient solver. The lower-
level is then responsible to learn joint space trajectories under
uncertainties using RL and DMPs.

4.4 Deep learning

A popular method of machine learning are NNs. Due to
their non-parametric nature, they can effectively represent
nonlinear mappings. A major drawback of NNs in the past
was their computational complexity of learning. In recent
years there is a renewed interest in NNs. New deep learning
approaches were successfully (LeCun et al. 2015) applied in
machine vision and language processing.

In recent years, deep learning has been applied also in
robotics to learn task dynamics (Yang et al. 2016) and
movement dimensionality reduction (Chen et al. 2015). The
authors (Chen et al. 2015, 2016) introduced a framework
called AutoEncoded DMP (AEDMP) which uses deep auto-
encoders to find a movements represented in latent feature
space. In this space DMPs can optimally be generalized to
new tasks, as well as the architecture enables the DMPs to be
trained as a unit. Pervez et al. (2017b) in their work coupled
the vison perception data for object calcification with task
specific movement definitions represented with DMPs. The
data was modeled with Convolutional Neural Networks
(CNNs), where the images and the associated movements
were directly processed by the deep NN, thus preserving
the associated DMPs properties and eliminating the need for
extracting the task parameters during motion reproduction.
Later on Kim et al. (2018b) combined deep RL with DMPs to
learn and generalize robotic skills from demonstration. The
framework builds on a RL approach to learn and optimize a
new DMP skill based of a demonstration. The RL approach
is backed up with a hierarchical search strategy, reducing the
search space for the robot, which allows for more efficient
learning of complex tasks. Furthermore, Pan and Manocha
(2018) presented an deep learning approach form motion
planning of high dimensional deformable robots in complex
environments. The locomotion skills are encoded with DMPs
and a NN is trained for obstacle avoidance and navigation.
The data is further optimized with deep Q-Learning showing
that the learned planner can efficiently plan and navigate
tasks for high dimensional robots in real time.

Pahic et al. (2018) proposed a deep learning approach
for perception-action couplings, demonstrating the coupling
between the vision based images and associated movement
trajectories. Later on they extended the approach to
incorporate CNNs and give a distinguishing property
formulation for the approach (Pahic¢ et al. 2020), which
utilizes a loss function to measure the physical distance
between the movement trajectories as opposed to measuring
the distance between the DMPs parameters which have
no physical meaning, leading to better performance of the
algorithm. Recently, they extended the usage of GPR to
create a database needed to train autoencoder NNs for
dimensionality reduction (Loncarevic¢ et al. 2021).
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4.5 Lifelong/Incremental learning

Lifelong (incremental) learning is a framework which
provides continuous learning of tasks arriving sequentially
(Thrun 1996; Chen and Liu 2018; Fei et al. 2016). The
essential component of this framework is a database which
maintains the knowledge acquired from previously learned
tasks TSK,,TSKy,--- ,TSKy_1. Incremental learning
starts from the task manager assigning a new task TS Ky
to a learning agent. In this case, the agent exploits the
knowledge in the DB as prior data for enhancing the
generalization performance of its model on the new task.
After the new task T'SK is learned, database is updated
with the knowledge obtained from learning 7S K . In fact,
the incremental learning framework provides an agent with
three capabilities: (i) continuous learning, (ii) knowledge
accumulation, and (iii) re-using previous knowledge for
future learning enhancements. Figure 15 shows general
structure of DMP integrated in a lifelong framework.

Churchill and Fernando (2014) proposed a cognitive
architecture capable of accumulating adaptations and skills
over multiple tasks in a manner which allows recombination
and re-use of task specific competences. Lemme et al. (2014)
segmented demonstrations based on geometric similarities,
and subsequently created a motion primitives library. The
library is updated by removing unused skills and including
new ones. Multiple demonstrations are used by (Reinhart and
Steil 2014, 2015) to build a parameterized skill memory that
connects low-dimensional skill parameterization to motion
primitive parameters. This low-dimensional embedding is
then leveraged for efficient policy search. Piece-wise linear
phase is used to improve incremental learning performance
(Samant et al. 2016). Duminy et al. (2017) designed a
framework for learning which data collection strategy is
most efficient for acquiring motor skills to achieve multiple
outcomes, and generalize over its experience to achieve new
outcomes for cumulative learning.

A generative learning framework is proposed to augment
the robot’s knowledge-base with missing information at
different level of the cognitive architecture including
symbolic planning as well as object and action properties
(Worgotter et al. 2015).

Wang et al. (2016) proposed a modified formulation of
DMPs called as DMP+ which capable of efficiently modify
learned trajectories by improving the usability of existing
primitives and reducing user fatigue during IL. Later, DMP+
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Figure 16. Human operators teach the robot how to perform different tasks. Left scenarios use robots’ gravity compensation mode
to enable kinesthetic guiding, where a human operator guides the robot’s tool center point along the desired trajectory in such a
way that the desired task is successfully executed (Sloth et al. 2020; Abu-Dakka et al. 2015a, 2018; Caccavale et al. 2019). Right
scenarios use teleoperation system to demonstrate appropriate robot movements either through haptic interface (Peternel et al.
2018a) or magnetic trackers (Abu-Dakka et al. 2015a).

had been integrated into a dialogue system with speech and
ontology to learn or re-learn a task using natural interaction
modalities (Wu et al. 2018).

In literature, it has been shown that incremental learning
provides better generalization than the isolated learning
approaches in terms of interpolation, extrapolation and the
speed of learning (Hazara and Kyrki 2017). Hazara and
Kyrki (2018) improved their Global Parametric Dynamic
Movement Primitive (GPDMP) (Lundell et al. 2017) in
order to construct, incrementally, a database of motion
primitives, which aims to improve the generalization to new
tasks. Furthermore, it has been transferred incrementally
from simulation to the real world (Hazara and Kyrki
2019). Moreover, authors endow incremental learning with
a task manager, which capable of selecting a new task by
maximizing future learning while considering the current
task performance (Hazara et al. 2019).

5 DMPs in Application Scenarios

We categorize the applications into several subsections based
on different topics. We first separate the use of DMPs for
robot interaction with the passive environment (e.g., tools,
objects, surfaces, efc) and for interaction with an agent that
involve co-manipulation (e.g., human, another robot, etc).
Additionally, we examine several other major application
areas, such as human body augmentation/rehabilitation with
exoskeletons, teleoperation, motion analysis/recognition,
high DoF robots, and autonomous driving and field robotics.
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5.1 Robots in contact with passive

environment

Most of the daily tasks that the robots perform involve
some kind of physical interaction with the environment
that requires control of forces or positions. Nevertheless,
simultaneous control of force and position in the same axis
is not possible (Stramigioli 2001)%, and therefore the control
approaches have to make a compromise between prioritizing
position control or force control (Schindlbeck and Haddadin
2015). The key to such control is for the robot to learn
appropriate force or position reference trajectories that can
lead to the desired task performance in interaction with the
environment.

5.1.1

A common approach to teaching robot motion trajectories
is kinesthetic guidance (Fig. 16-Left), where the human
operator holds the robot arm and shows the appropriate
movements to be encoded by DMPs (Kormushev et al. 2011;
Abu-Dakka et al. 2015a; Joshi et al. 2017; Papageorgiou et al.
2020a,b). Recently, the technology is protruding into high
risk fields such as invasive surgery, where high-dimensional
fine human-like manipulation skills are being demonstrated
(Su et al. 2021) and executed with robots (Su et al. 2020;
Ginesi et al. 2019). In (Kormushev et al. 2011), the human
held the robot arm and used kinesthetic guidance to teach
the position and orientation trajectories necessary to perform
ironing and door opening task. In the second stage the

Demonstration of interaction tasks

§There is a duality in impedance-admittance, i.e., , the force produce motion
and motion produces force, therefore if one is the input, the other can only
be the output of the control system Peternel et al. (2017a).
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Figure 17. Using DMPs for adapting to changing surfaces
(e.g., wiping task) (Kramberger et al. 2018)

corresponding forces and torques were recorded with a
haptic device in a teleoperation setup. For setups where the
robot arm is equipped with multiple force/torque senors, the
two demonstration steps with additional control policies can
be combined into one (Steinmetz et al. 2015; Montebelli
et al. 2015).

An alternative to learning force trajectories is to learn
the impedance of the robot by learning the desired stiffness
trajectories. The ability to change the impedance of the arm is
crucial to simplify the physical interaction in unpredictable
and unstructured environments (Hogan 1984; Burdet et al.
2001). In (Peternel et al. 2015, 2018a) teleoperation was
used with a push-button interface to command the robot
impedance, which was learned by DMPs that enabled the
robot to perform various collaborative assembly tasks. For
example, the learned position and stiffness DMPs were used
to insert a peg in a groove to bind the two parts (Peternel et al.
2015), or to screw a bolt (Peternel et al. 2018a). A similar
approach was used in (Yang et al. 2018) to learn DMPs used
for vegetable cutting task.

While teleoperation based methods are very effective
to teach the robot DMPs for interaction tasks, it usually
involves a complex and expensive system. The method
in (Abu-Dakka et al. 2018) enabled the robot to learn
stiffness profiles through measurement of interaction force
with the environment to perform valve turning task. The
method in Peternel et al. (2017a) used human demonstration
and EMG to learn stiffness DMPs from human muscle
activity measurements in order to perform sawing and wiping
(Fig. 17) tasks.

Nevertheless, adaptation of a single trajectory is unlikely
to generate an appropriate solution for more general cases,
where the task execution needs to change significantly.
After learning the initial DMP motion trajectories through
kinesthetic guidance, the robot can then adapt them based
on the measured force of interaction while performing the
task. Pastor et al. (2011) introduced a method for real-time
adaptation of demonstrated DMPs trajectories depending
on the measured sensory data. They developed an adaptive
regulator for trajectory adaptation based on estimated and
actual force data. Recently, Prakash et al. (2020), extended
the real-time adaptation approach incorporating a fuzzy
fractional order sliding mode controller in order to efficiently
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Figure 18. An example of using DMPs in assembly tasks
(e.g., peg-in-the-hole) (Kramberger et al. 2016b)

and stably adapt the demonstrated DMP trajectory to fast
movements, such as a ping pong swing.

Sutanto et al. (2018) presented a data-driven framework
for learning a feedback model from demonstrations. They
used an RBF-NN (RBF-NN) to represent the feedback
model for the movement primitive. Similarly to this research,
Gams et al. (2010) proposed a method for adaptation of
demonstrated movements depending on the desired force,
with which the robot should act on the environment. Thus,
they ensured the adaptation of the learned movements to
different surfaces. This approach was later expanded (Pastor
et al. 2011) to provide the statistically most likely force-
torque profile (Pastor et al. 2012) and furthermore, force-
torque data was used for training a classifier (Straizys et al.
2020) in order to modulate the demonstrated trajectory for
the use with delicate tasks such as tissue or fruit cutting.

Moving onward form policy learning, Do et al. (2014)
presented an adaptation framework, where not only the
desired adaptation force or trajectory, but the entire skill can
be learned. They demonstrated the method with a wiping task
under different environmental conditions.

5.1.2 Assembly tasks

Assembly presents one of the more challenging tasks to
automate, where not only position trajectories but also task
dynamics have to be taken into account. To deal with this
challenge, various methods were proposed. Abu-Dakka et al.
(2015a) proposed a method that can learn the orientation
aspect of the complex physical interaction, like the peg-in-
the-hole assembly tasks (Fig. 18). The proposed method was
integrated in an industrial assembly framework where the
key challenge was to adapt to uncertainties presented by the
assembly task (Kriiger et al. 2014; Abu-Dakka et al. 2014).

Complex assembly tasks that are subject to change cannot
be demonstrated and executed on the fly therefore, adaptation
methods are required for ensuring a successful execution.
Nemec et al. (2020) used exception strategies for dealing
with complex assembly cases . Sloth et al. (2020) presented
an exception strategy framework, combining discrete and
periodic DMP, coupled with force control to learn an
assembly task under tight tolerances. Gaspar et al. (2020)
presented several industrial assembly challenges and focused
on fast and efficient setup of industrial tasks with the
emphasis on LfD. Angelov et al. (2020) incorporated several
different control policies by taking into account the dynamics
and sequencing of the task.
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In some cases, active exploration and autonomous
database expansion can be used for learning assembly
policies automatically. In (Petric et al. 2015) the proposed
algorithm can build and combine CMP motion knowledge
from a database in an autonomous manner.

Complementary to assembly tasks, disassembly is also
challenging by solely using the demonstrated trajectories. As
described in (Ijspeert et al. 2013), DMPs have a unique point
attractor in the specified goal parameter of the movement,
essentially repelling the idea of reversibility. Therefore,
Nemec et al. (2018) proposed a framework, where the
disassembly challenge was tackled by learning two separate
DMPs from a single demonstrated motion; one forwards and
one backwards. San Juan et al. (2019) took the idea further
and reformulated the DMPs phase system with a logistic
differential equation to obtain two stable point attractors.
This approach provided a reversibility formulation of the
dynamical system and demonstrated the effectiveness of the
algorithm on a peg-in-hole assembly task.

5.1.3 Learning methods for contact adaptation

Desired force-torque profiles can be tracked using ILC
(Gams et al. 2014, 2015b). In repetitive robotic tasks,
iterative learning has been gaining increased popularity
(Bristow et al. 2006) due to its effectiveness and robustness.
However, in order to achieve effective results, a careful
tuning of learning parameters is required. Norrlof (1991) and
Tayebi (2004) presented an adaptive learning approach for
automated tuning of learning parameters.

Another approach is to use RL to adapt DMPs. For
example, in (Buchli et al. 2011b,a) stiffness parameters were
adjusted during the task execution by RL.

Alternatives to feedback-based adaptation of DMPs and
RL are scalability and generalization approaches. Matsubara
et al. (2011) proposed an algorithm for the generation of new
control policies from existing knowledge, thereby achieving
an extended scalability of DMPs, while mixture of motor
primitives were used for generation of table tennis swings
(Miilling et al. 2010). On the other hand, generalization of
DMPs was combined with model predictive control by Krug
and Dimitrov (2015) or applied to DMP coupling terms by
(Gams et al. 2015a), which were learned and later added
to a demonstrated trajectory to generate new joint space
trajectories.

Stulp et al. (2013) proposed to learn a function
approximator with one regression in the full space of phase
and tasks parameters, bypassing the need for two consecutive
regressions. Forte et al. (2012) performed a comparison
study of LWR and GPR for trajectory generalization. This
work shows that higher accuracy can be achieved with LWR
trajectory approximation. Koropouli et al. (2015) presented
a generalization approach for force control policies. By
learning both the policy and the policy difference data using
LWR, they could estimate the policy at new inputs through
superposition of the training data.

(Denisa et al. 2016a) used GPR based generalization over
combined joint position trajectories and torque commands
in the framework of CMPs. To showcase the versatility
of the approach, (Petric et al. 2018) applied it for robot
based assembly tasks. Finally, Kramberger et al. (2017)
extended the approach to account for variations of the desired
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Figure 19. An example of using DMPs for collaborative
human-robot sawing from (Peternel et al. 2018b).

tasks, e.g., assembly of similar objects. This enables the
robot movements to be automatically generated with the
use of LWR from a demonstrated database of successful
task executions, which include kinematic and dynamic
demonstrated trajectories encoded with DMPs. The newly
obtained data is used to account for the changes in the
work-space. Nevertheless, a major problem in statistical
learning is how to efficiently deal with singularity free
representations of orientation trajectories. To resolve this
issue, Kramberger et al. (2016a) proposed a formulation for
Cartesian space DMPs where orientations are represented
with unit quaternion.

5.2 Human-robot co-manipulation

While control of robot interaction with the passive
environment can solve majority of the tasks, in some cases
the robot needs to interact with an active agent (e.g., human,
another robot, etc.). Human-robot collaboration is becoming
one of the key fields in robotics (Ajoudani et al. 2018). To
perform a successful physical human-robot collaboration,
the robot must be able to control complex movements in
coordination with the human partner. In this direction, the
ability to modulate the impedance is important to coordinate
the physical interaction during human-robot co-manipulation
of tools (Peternel et al. 2017b). DMPs offer an elegant
solution to encode such coordinated dynamic movements.

In (Peternel et al. 2014) the collaborative robot was
thought online through teleoperation how to perform
collaborative sawing with a human co-worker. The
impedance was commanded to the robot through muscle
activity measurement using EMG. DMPs were used to
encode coordinated phase-dependent motion and impedance
as demonstrated by the human teleoperator. Teaching though
teleoperation is an effective way to convey the physical
interaction skill to the collaborative robot, however the setup
can be expensive and is not widely available.

An intuitive alternative to teleperation is for the robot
to learn the skill directly though physical interaction with
the human partner while they are collaborating. Numerous
methods have focused on learning the synchronized motion
between collaborative partners (Kulvicius et al. 2013; Prada
et al. 2013; Gams et al. 2014; Umlauft et al. 2014; Zhou
et al. 2016a; Peternel et al. 2018b; Sidiropoulos et al. 2019;
Ugur and Girgin 2020). For example, in (Kulvicius et al.
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2013) the interactive movements were encoded with DMPs
and adapted them based on the measured force arising from
the disagreements between agents during co-manipulation.
Similarly, in (Gams et al. 2014) the collaborative movements
were encoded with DMPs and adapted using force feedback
and ILC. The approach in (Zhou et al. 2016a) combines two
DMPs to encode the movements of each partner’s arm, which
are coupled in a leader-follower manner.

Besides adapting the collaborative movements, in (Peter-
nel et al. 2016b, 2018b) the robot used DMPs to also learn the
impedance online directly from the co-manipulation with the
human (Fig. 19). The robot started with a basic skill set that
enabled it to collaborate with the human in a pure follower
role. Thorough the collaborative task execution the robot
then learned the motion and impedance trajectories online
and encoded them with DMPs. When the human became
fatigued, the robot used the learned advanced skill to take
over majority of the task execution.

The method in (Ben Amor et al. 2014) proposed an
upgraded version of standard DMPs called Interaction
Primitives that can account for a probabilistic nature of
collaborative movements. Rather than having a single
value of weights, the DMP includes weight distributions.
This distribution enabled the robot to learn the inherent
correlations of cooperative actions and infer the behavior
of the human partner during the cooperation. (Cui et al.
2016, 2019) used visual information to extract context
related parameters that augment the interaction primitives to
increase the robustness during the task execution.

There are also other types of co-manipulation scenarios,
such within-hand bi-manipulation or human-robot object
handover. For example, in (Koene et al. 2014; Gao et al.
2019) DMPs were used to perform bi-manipulation, while
in (Prada et al. 2014; Solak and Jamone 2019; Lafleche et al.
2019; Abdelrahman et al. 2020) DMPs were used for human-
robot object handover.

When the environment is hazardous for the human
workers or when there are too many robots compared to
the number of human workers, the obvious solution is to
make robot collaborate between themselves. The method in
(Peternel and Ajoudani 2017) used DMPs to make novice
robots learn from the expert robot through co-manipulation.
Initially the novice robot remained compliant to let the expert
robot lead the task execution. In the first stage, the novice
robot learned the reference motion through DMPs. In the
second stage, it became stiff to perform the newly learned
motion, while the expert robot initiated stiff/compliant
phases expected in the collaborative task execution. Finally,
the novice robot then learned in which phases of the task
to increase or decrease the impedance and encoded this
impedance behavior with DMPs.

5.3 Human assistance, augmentation, and
rehabilitation

The most common type of co-manipulation is the classic
human-robot collaboration, where a human and a robotic
agent are physically performing industrial or daily tasks.
Another type of co-manipulation occurs when a human
is wearing an exoskeleton. In most cases, the exoskeleton
simply amplifies the current human motion (Kong and Jeon
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Figure 20. An example of using DMPs for teaching passive
exercises for ankle rehabilitation (Abu-Dakka et al. 2015b,
2020).

2006; Fleischer and Hommel 2008). However, in some cases
we want the exoskeleton to execute pre-defined trajectories
in order to perform a physical therapy on patients, or to
completely offload a repetitive motion of healthy human
workers.

The methods in (Lauretti et al. 2017, 2018) obtained
DMPs in offline by learning by demonstration, which
were then used by an arm exoskeleton to support human
movements. In (Peternel et al. 2016a) the control method
employed DMPs to interactively adapt the joint torques
required to perform the arm exoskeleton movements and
compensate all the underlying dynamics (Fig. 21-Left). The
phase-dependent toque trajectory updated online in order to
minimise the muscle activity feedback measured by EMG.
In (Petric et al. 2016) the robot encoded the assistive motion
with DMPs and then adapted it by taking into account aspects
of human motor control through the Fitts’ law.

Gait related rehabilitation with exoskeletons is a very
common application of DMPs and there are numerous
examples (Abu-Dakka et al. 2015b; Huang et al. 2016a,b;
Hwang et al. 2019; Yuan et al. 2020; Amatya et al. 2020). In
(Abu-Dakka et al. 2015b, 2020) a parallel robot was used for
ankle rehabilitation, where the movements were generated
by DMPs (Fig. 20). In (Huang et al. 2016a) DMPs were
used to learn the gait motion trajectories for a lower-body
exoskeleton. This approach was then extended with a RL
method to adapt a force coupling term (similar to earlier
approaches presented in Section 3.3.2) to enable online
adaption of motion trajectories (Huang et al. 2016b).

Besides normal gait, DMPs were also applied for stair-
ascend (Xu et al. 2020) and sit-to-stand (Kamali et al. 2016)
assistive movements of lower-body exoskeletons. In (Joshi
et al. 2019), a robotic arm was used to assist humans with
putting the cloths on their body, where the movements were
generated by DMPs.

Besides assistive body movement and rehabilitation,
DMPs were also applied for relaxation purposes. For
example, in (Li et al. 2020) a robotic arm provided massage
movement through DMPs.



Saveriano, Abu-Dakka, Kramberger, and Peternel

27

Figure 21. The left photo shows arm exoskeleton application

from (Peternel et al. 2016a). The right photo shows high-DoF

humanoid robot Walk-man (Tsagarakis et al. 2017) performing
sawing in (Peternel and Ajoudani 2017).

5.4 Teleoperation

Teleoperation is one of the major fields of robotics and
enables a human to have a direct and real-time control
over a (remote) robot. Typically the control is done through
interfaces that can capture the human commands to be sent
to the robot and that can provide haptic feedback from
the robot. While teleoperation focuses on giving the human
operator a full or shared control over the robot, DMPs are
used to encode autonomous robot behaviors. Therefore, here
we mostly examine cases where teleoperation is used to teach
the robot new autonomous behavior encoded by DMPs.

In (Kormushev et al. 2011) a combination of kinesthetic
teaching and teleoperation was employed to form the
DMP-based robot skill for ironing. After the motion
trajectories were learned through kinesthetic guidance, the
corresponding forces were recorded by using haptic device
and a teleoperation system. In (Peternel et al. 2014)
teleoperation was used to teach the robot how to physically
collaborate with another human. Since there was no haptic
feedback, the teleoepration setup was unilateral, but the
human was able teach also the impedance of the robot in
addition to motion. The former was commanded by muscle
activity measurement through EMG, while the latter was was
commanded by the movement of the human operator’s arm
as measured by an optical motion capture system.

In (Peternel et al. 2018a) the human operator thought
the robot through teleoperation how to perform autonomous
assembly actions (Fig. 16-Right). DMPs were used to
encode the commanded impedance and motion, however
a more practical push-button based impedance command
interface was employed. More importantly, the teleoperation
setup was bilateral and the haptic interface provided the
human operator the feedback about the forces the robot felt.
Similarly, teleoperation approaches were used in (Yang et al.
2018; Lentini et al. 2020).

Real robot is not always necessary to acquire new
skills. In (Beik-Mohammadi et al. 2020) the robot and
the environment were simulated and the human operator
used a virtual reality system. A combination of DMPs
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and RL was used to form an adaptive skill. The scenario
proposed in (Abu-Dakka et al. 2015a) was teleoperation
in its basis, however the human demonstrator did not just
pretend that he/she is embodied in the robot, but the robot
task environment was cloned at the human side (Fig. 16-
Right). This removed the need for force feedback and haptic
device, since the human felt the real environment on his/her
side, while the motion was captured by non-contact based
sensory system (i.e., magnetic trackers) and then mirrored
on the robot.

Multiple demonstrations through teleoperation can be
inconsistent, especially if done in a multi-agent shared-
control setting. The method proposed in (Pervez et al. 2019)
can synchronize inconsistent demonstration through shared-
control teleoperation and encode them with DMPs.

5.5 High DoF robots

DMPs provide an elegant and fast way to deal with systems
with high-dimensional space by sharing one canonical
system (3) among all DoFs and maintain only a separate set
of transformation systems. By high-dimensional space we
are referring to systems with 10 or more DoFs (i.e., Walk-
man humanoid robot in Figure 21-Right). In this section, we
will quickly mention some of the potential works with high
number of DoFs.

Ijspeert et al. (2002b,a) used DMPs in an IL framework
to learn tennis forehand, a tennis backhand, and rhythmic
drumming using 30-DoFs humanoid robot. Pastor et al.
(2009) used DMPs to encode a 10-DoFs exoskeleton robot
arm. Luo et al. (2015) integrated DMPs with stochastic
policy gradient RL and GPR in order to design an online
adaptive push recovery control strategy. The approach had
been applied to PKU-HRS humanoid robot with 20-DoFs.
André et al. (2015, 2016) implemented a predictive model
of sensor traces that enables early failure detection for
humanoids based on an associative skill memory to periodic
movements and DMPs. They applied their algorithm on
DARwIn-OP with 20-DoFs in simulation. Pfeiffer and
Angulo (2015) represented gestures by applying DMPs on
REEM robotic platform with 23-DoFs. Nah et al. (2020)
proposed an approach to optimize DMP parameters in order
to deal with the complexity of of high DoF system like
a whip. They tested their approach in simulation for 10-
, 15-, 20-, and 25-DoFs systems. In order to reduce the
number of required rollouts for adaptation to new task
conditions, Queiller and Steil (2018) used CMA-ES to
optimize DMPs parameters. In addition, they introduced
a hybrid optimization method that combines a fast coarse
optimization on a manifold of policy parameters with a fine
grained parameter search in the unrestricted space of actions.
The approach was successfully illustrated in simulation using
a 10-DoFs robot arm. Liu et al. (2020) proposed DMP-based
trajectory generation to enable a full-body humanoid robot
with 10-DoFs (for the two legs) to realize adaptive walking.

Travers et al. (2016, 2018) proposed a framework that
integrates DMP with Gaussian-shaped spatial activation
windows in order to plan the motion for high DoF robotic
systems (e.g., snake-like robot) in complex environment
(with obstacles) by linking low-level controllers to high-level
planners.



28

Journal Title XX(X)

5.6 Motion analysis and recognition

DMPs tend to fit topologically similar trajectories with
similar shape parameters w; (Ijspeert et al. 2013). This
behavior, due to the temporal and spatial invariance of
DMPs, makes the shape parameters a useful descriptor to
recognize similar motions. Indeed, (Strachan et al. 2004)
have shown that the shape parameters computed for 5
repetitions of 4 classes of discrete hand gestures—measured
with a 3 DoFs accelerometer—are linearly separable,
i.e., easy to classify. Lantz and Murray-Smith (2004) draw
similar conclusions for 10 classes of periodic hand gestures.
Xu et al. (2005) used the correlation between the parameter
vectors of two DMPs to measure the similarity between
the original motion and recognize gait patterns. Similarly,
(Ijspeert et al. 2013) used the correlation between parameter
vectors to recognize the 26 letters of the Graffiti alphabet.

The shape parameters w; are also suitable to fit more
sophisticated classifiers like support vector machines. This
strategy was used to successfully classify gestures observed
with a monocular Liu et al. (2014) or a binocular (Wang
and Payandeh 2015) camera. Instead of considering a fixed
number of basis function (number of shape parameters),
(Zhang et al. 2017) used fast dynamic time warping
(Salvador and Chan 2007) to align parameter vectors of
different length and then used K-nearest neighbors to
classify different motions.

Motion recognition can also be used to determine whether
the robot is correctly executing a task by comparing sensed
data with a movement template. In this respect, (André et al.
2016) used an associative skill memory, like the one in
(Pastor et al. 2011), as a predictive model of sensor traces that
enables early failure detection. In this work, DMPs were used
to compactly encode the associative skill memory and speed
up the failure detection. Described approaches demonstrate
that DMPs are a valuable option for gesture recognition
especially for systems with limited computational power.

Humans tend to perform the same task in slightly
different manners. Sometimes differences in the execution
style contain useful information to adapt the motion to
difference executive context. This is the case, for instance,
of a reaching motion with and without an obstacle on
the way. To capture the execution style (Matsubara et al.
2010) augmented the forcing term of the DMP with a style
parameter learned from multiple demonstrations. At run
time, different style parameters can be used to smoothly
interpolate between demonstrated behaviors. Zhao et al.
(2014) employed movements with different styles, but also
learned a smooth mapping between style parameters and goal
to improve the generalization.

When humans provide seamless demonstrations, DMPs
can be used for online segmentation and recognition. To
this end, (Meier et al. 2011) assumed that a library of
DMPs is given and used it to recognize motion segments
during a task demonstration. Instead of using exemplar
templates for each class of primitives, (Chang and Kuli¢
2013) segmented a video stream using motion to non-
motion transitions, fitted DMPs on segmented data, and
performed clustering to group similar motion segments in
an unsupervised fashion. Song et al. (2020) performed
unsupervised trajectory segmentation using the concept
of key points, i.e., shared features across different task
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demonstrations. (Mandery et al. 2016) segmented whole-
body motions by detecting contacts with the environment
and used them to build a probabilistic language model where
words represent the poses and sentences sequences of poses.
The learned language model was used to plan whole-body
motion trajectories executed by joining multiple DMPs (see
Section 3.2).

DMPs have been developed as a computational model of
the neurobiological motor primitives (Schaal et al. 2007).
Experimental findings from neurophisiology related to the
spinal force fields in frog have inspired the modification of
DMPs formulation in (Hoffmann et al. 2009). As discussed
in Section 3.1.1, this multidimensional representation
overcomes limitations of classical DMPs like trajectory
overshooting and dependence of the trajectory from the
reference frame used to describe the motion. Hoffmann et al.
(2009) also derived a collision avoidance strategy for DMPs,
inspired by the way human avoid collisions during arm
motion. (DeWolf et al. 2016) investigated the human ability
to cope with to changes in the arm dynamics and kinematic
structure during motion control. They proposed a spiking
neuron model of the motor control system that uses DMPs
to implement the preparation and planning functionalities of
the premotor cortex. The effects of changes in the robot’s
dynamic parameters on the tracking performance of a DMP
trajectory were studied in (Kuppuswamy and Alessandro
2011). Their findings suggests that the change in the body
parameters should be explicitly considered in the DMP
learning process. Hotson et al. (2016) augmented a brain-
machine interface that captures neural signals with a DMP
model of the endpoint trajectories executed by a non-human
primate. The system was used to decode real trajectories
form a primate manipulating four different objects.

5.7 Autonomous driving and field robotics

DMPs can be utilized in various autonomous non stationary
fields of robotics. Perk and Slotine (2006) utilized DMPs
for defining flight paths and obstacle avoidance for
Unmanned Areal Vehicles (UAVs), where the trajectories
were generated based on the joystick movements controlling
the throttle of the UAV motors. Later, (Fang et al. 2014)
extended the approach to encode user demonstrated UAV
data, extracting and encoding the rhythmic and linear
segments of the flight trajectory, and combining them into
a flight control skill. Furthermore, (Tomi¢ et al. 2014)
formulated the UAV movements as a optimal control
problem. The output of the optimal control solver was
encoded with DMPs, enabling them to generalize and
apply in-flight modifications to the UAV flight trajectories
in real-time. Similarly, Lee et al. (2018); Kim et al.
(2018a) presented a framework for UAV cooperative areal
manipulation tasks, based on an adaptive controller which
adapts the movement of the UAV in relation to the mass
and inertial properties of the payload. In addition, DMPs
were incorporated in the control scheme to modify the flight
trajectories and avoid obstacles on the fly. The approach was
later extended to incorporate path optimization, where DMPs
play a significant tole for real time obstacle avoidance (Lee
et al. 2020).

As mentioned before, DMPs represent a versatile
movement representation, which can be implemented in
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various tasks and scenarios. One of the recent applications in
this field are also Autonomous Underwater Vehicles (AUVSs).
Carrera et al. (2015) integrated the DMPs in a learning by
demonstration scenario for an AUV. The demonstrated data
consisted of the manipulator and vehicle sensory outputs,
which were efficiently used to demonstrate an underwater
valve turning task.

DMPs are also represented in the autonomous driving
domain. In the recent work of (Wang et al. 2018, 2019),
the authors propose a framework which decomposes the
complex driving data into a more elementary composition
of driving skills represented as motion primitives. In the
proposed framework, DMPs are utilized to represent the
driver’s trajectory with acceptable accuracy and can be
generalized to different situations.

6 Discussion

This section provides guidelines to choose, among the
several discussed in this work, the most appropriate approach
for a given application. A useful criterion to decide whether
to use a particular approach is the availability of code that
greatly simplifies the implementation. We have searched
for open-source DMP implementations and listed them in
a Git repository (see Section 6.2). To further contribute
the community, we have also released the implementations
listed in Table 4. This section ends with a discussion on the
limitations inherent to the DMP formulation, the open issues,
and the possible research directions. These are summarized
in Table 5.

6.1

Previous sections present different DMP formulations and
extensions together with possible application scenarios. As
usual, there is not a single formulation that serves all the
scopes and purposes, and the suitable approach to use
depends on the goal to achieve and conditions of application.
For this reason, we present some guidelines to guide the user
in the process of selecting the formulation to use.

Guidelines for different applications

6.1.1

For a task with distinct starting and ending points, discrete
DMPs are a logical option to encode the movement
trajectories between them. Examples of these tasks include:
reaching and pick-and-place, (Stulp et al. 2009; Forte et al.
2012; Denisa et al. 2016a; Caccavale et al. 2019), specific
actions of assembly (Kriiger et al. 2014; Abu-Dakka et al.
2014; Gaspar et al. 2020; Nemec et al. 2020; Angelov et al.
2020) and cutting (Yang et al. 2018; Straizys et al. 2020).

When the starting and ending points coincide, periodic
DMPs are the logical option, since the encoded movements
can be repeated over and over again. Good examples of their
application are repetitive tasks such as locomotion (Riickert
and d’Avella 2013; M. Wensing and Slotine 2017), human
body augmentation/rehabilitation (Peternel et al. 2016a),
wiping a surface (Gams et al. 2016; Peternel et al. 2017a;
Kramberger et al. 2018) and sawing (Peternel et al. 2018b).
Nevertheless, even typically non-repetitive tasks that are
executed just once every now and then can still be encoded
with periodic DMPs when the starting and ending points
coincide (Peternel et al. 2018a).

Discrete vs periodic
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There are cases where it is not possible to clearly
distinguish if the motion is periodic or discrete. For instance,
(Ernesti et al. 2012) have shown that the first step in a gait of
a humanoid robot is a transients towards a periodic motion.
Their representation is a good candidate to encode transients
converging to a limit cycle trajectories. Finally, in some cases
like in complex assembly, the task requires a combination of
discrete and periodic DMPs (Sloth et al. 2020).

6.1.2 Space representation

The original formulation of DMPs were and are still
successfully applied to multidimensional independent data
with each DoF € R (Section 2.1.1 and 2.2.1). These data
can be joint or Cartesian positions, forces, torques, efc,
where every DoF of the data can be evolved independently
form the rest. However, such formulation is not enough to
successfully encode data with specific geometry constraints
without pre- and/or post-processing the data. Examples
of such data are: i) orientation, where data are tight up
by additional constraints (i.e., the orthogonality in case
of rotation matrix representation or the unit norm of
the quaternion representation); if) full stiffness/damping
matrices and manipulability matrices are encapsulated in an
SPD matrices.

In many early works, orientation trajectories were learned
and adapted without considering its geometry constraints
(Pastor et al. 2009), leading to improper orientation and
hence requiring an additional re-normalization. In a different
example, Umlauft et al. (2017) used eigendecomposition for
impedance adaptation.

In order to comply with such geometry constraints,
researchers provided new formulation of DMPs that ensures
proper unit quaternions or rotation matrices over the course
of orientation adaptation Abu-Dakka et al. (2015a); Ude
et al. (2014); Saveriano et al. (2019); Koutras and Doulgeri
(2020a), and proper SPD matrices over the course of the
adaptation of SPD profiles (e.g., stiffness or manipulability
ellipsoids) (Abu-Dakka and Kyrki 2020). We believe that
using these geometry-aware DMPs is preferable to encode
data with underlying geometry constraints.

6.1.3 Weights learning method

DMPs represent motion trajectories as stable dynamical
systems with learnable weights that define the shape of the
motion. In the LfD paradigm, DMP weights are usually
learned in a supervised manner using human demonstrations.
The procedure used to transform human demonstrations into
training data for the DMP forcing term is highlighted in
Section 2.1.1.1. Given the training data, different techniques
can be used to fit the weights.

LWR is widely used when the forcing term is a
combination of RBFs as in (4). If multiple demonstrations
are given, one can exploit GMM/GMR as in (Pervez et al.
2017a) or GPR as in (Fanger et al. 2016) to represent the
forcing term and use expectation—maximization to fit the
(hyper-)parameters. Deep NN, typically trained via back-
propagation, seem an appealing possibility to map input
images into forcing terms (Pervez et al. 2017b), mimicking
the human perception-action loop. Although appealing, the
possibility of exploiting deep learning techniques as motion
primitives requires further investigations.
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Table 4. Open-source implementations of DMP-based approaches that we have released to the community. The source code for
each appraoch is available at https://gitlab.com/dmp-codes—collection

Approach Author Language Description
. An implementation for discrete DMP based on the work in
Discrete DMP Fares J. Abu-Dakka cHt (Ude et al. 2010; Abu-Dakka et al. 2015a; Ude et al. 2014).
Periodic DMP Luka Peternel Python An implementation for periodic DMP based on the work in
(Peternel et al. 2016a).

. . An implementation for unit quaternion DMP and goal
Unit quaternion Fares J. Abu-Dakka Matlab and switching based on the work in (Abu-Dakka et al. 2015a;
DMP C++

Ude et al. 2014).
) An implementation for SPD DMP and goal switching based
SPD DMP Fares J. Abu-Dakka Matlab on the work in (Abu-Dakka and Kyrki 2020).
Joining DMPs Matteo Saveriano Mat lab An mplementghon for joining multiple DMPs based on the
work in (Saveriano et al. 2019).
Coupling-force Aljaz Kramberger Mat lab An implementation for discrete DMPs and force coupling

DMPs

terms based on the work in (Kramberger et al. 2018).

In real applications, there can be a misplacement between
the DMP trajectory and the robot motion. Typical examples
include assembly or other tasks that require physical
interaction with the environment (see Section 5.1). In this
situations, the DMP motion can be incrementally adjusted to
improve the robot performance. ILC arises as an interesting
approach to iteratively update the DMP weights as it ensures
a rapid convergence to the desired performance (Gams et al.
2014; Abu-Dakka et al. 2015a; Kramberger et al. 2018).
However, ILC assumes that a target behavior to reproduce
is given. When the target behavior cannot be easily specified
and the robot performance is not satisfactory, RL solutions
have to be adopted. As detailed in Section 4.3, DMPs are
effective control policies and, combined with policy search
algorithms like PI? or POWER, are able to solve complex
and highly dynamic tasks.

6.1.4 Online adaptation

Performing robotic tasks in the real world requires adaptation
capabilities. When adaptation of DMPs based on some
feedback is required, one of the extension methods should
be applied. For example, to change the existing movement
based a detected obstacle, the method in (Park et al. 2008;
Hoffmann et al. 2009; Tan et al. 2011; Gams et al. 2016) can
be used (see Section 3.3.1). If it is necessary to adaptively
learn the movement dynamics based on real-time effort
feedback, the method in (Peternel et al. 2016a) can be
employed (see Section 3.3).

Furthermore, for industrial tasks, such as assembly or
polishing, adaptation strategies combining force control with
demonstrated trajectories can be applied (Abu-Dakka et al.
2015a; Kramberger et al. 2016a; Gams et al. 2010), ensuring
the system will follow the predefined trajectory and adapt
to the environmental uncertainties. For online adaptation
DMPs can be used as a trajectory generator, which output
represents an input to the force control algorithm, on the
other hand, force feedback can directly be incorporated as a
coupling term in the DMPs formulation (see Section 3.3.2),
eliminating the need for an additional force controller.

Prepared using sagej.cls

Similar approach can also be utilized for velocity based
adaptation of the movements (see Section 3.3.4).

6.1.5 Impedance vs force

In physical interaction tasks, DMPs can be used to either
learn force or impedance (Peternel et al. 2017a). If the
task requires position control, then the impedance should
be learned with DMPs in combination with the reference
position. If the task requires to control a specific force,
e.g., pushing on a surface during the wiping and drilling,
either force or impedance is feasible. However, if safety is
the most critical aspect, the DMPs should be used to learn
impedance control so that the robot can be made soft.

Furthermore, to overcome any undesirable movements,
the control policy can be augmented with a tank-based
passivity approach (Shahriari et al. 2017). This approach
monitors the energy flow between the modeled sub-
systems, e.g., DMPs trajectory generation, impedance
control, environment. In an event of an energy violation, the
system will first try to passively compensate for the violation
and subsequently if the violation cannot be compensated e.g.
the energy tank is depleted, stop the system. In cases, where
the task characteristics are not fully known, a learning policy
can be added on top of the passivity approach (Kramberger
et al. 2018) in-order to learn the overall energy requirements
for the task.

6.2 Resources and codes

Availability of code and datasets is useful to speed-up
the setup of novel applications without the need of re-
implementing a promising approach from scratch. We
have searched for available DMP implementation and
found out that several researchers published their DMP
codes in various open-source repositories. We decided to
list the available implementations on the Git repository
that accompanies this paper (https://gitlab.com/
dmp-codes—-collection/third-party—-dmp). For
each implementation, we mention the type of DMP, the
author, the url to download the code, and the used
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programming language. We also provide a short description
of the key features.

Apart from listing existing approaches, the Git repository
that accompanies this paper contains implementation that we
decided to release to the community. The list of provided
implementations is given in Table 4.

6.3 Limitations and open issues

As any motion primitive representation, DMPs have
strengths but also inherent limitations. The advantages of
the DMPs have been widely discussed in previous sections.
Here, we present the main limitations of the DMPs and
discuss open issues that require further investigation. A
summary of these limitations is presented in Table 3.

6.3.1

The phase variable used to suppress the non-linear forcing
term and ensure convergence to a given goal introduces
an implicit time dependency in the DMP formulation. The
reason for representing the time dependency implicitly as
a dynamical system is that such a phase variable can be
conveniently manipulated. For example, in Section 2.1.1.2,
we have seen how to manipulate the phase variable to
slow-down (or even stop) the execution. A drawback of
the time dependency is that the shape of the DMP motion
is significantly affected by the time evolution of the phase
variable. If the phase vanishes too early, the last part of
the trajectory is executed with a linear dynamics converging
to the goal. If the phase lasts too long, the trajectory may
overshoot and fail to reach the goal within the desired time.
In both cases, the DMP motion may significantly deviate
from the demonstration. A properly designed phase stopping
mechanism can remedy the issue, but the proper phase
stopping to adopt depends on the specific application.

In order to overcome this limitation, several authors
focused on learning stable and time-independent (or
autonomous) dynamical systems from demonstrations. A
globally stable and autonomous system generates a vector
field that converges to the given goal from any initial state.
Without the need of a phase variable, the generated motion
depends only of the current state of the system. Notable
approaches to learn stable and autonomous systems exploit
Lyapunov theory (Khansari-Zadeh and Billard 2011, 2014),
contraction theory (Ravichandar and Dani 2015; Blocher
et al. 2017), diffeomorphic transformations (Neumann and
Steil 2015; Perrin and Schlehuber-Caissier 2016), and
passivity considerations (Kronander and Billard 2015).
These approaches have been effectively used to learn
complex movements from demonstrations.

In general, autonomous systems have the potential to
represent much more complex movements than DMPs.
For example, autonomous systems can encode different
motions in different regions of the state-space. In this
respect, DMPs can only generate a stereotypical trajectory
connecting the start to the goal, regardless where the initial
state is placed in the state-space. However, the stereotypical
motion generation is also an advantage of DMPs since it
makes easier to predict the generated motion in regions
of the state-space poorly covered by training data. On the
contrary, it is hard to predict how an autonomous system
generalizes where only few or no training data are available.

Implicit time dependency
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DMPs are know to scale well in high-dimensional spaces
since the learned forcing term always depends on a shared,
scalar phase variable. Autonomous systems perform learning
directly on the high-dimensional state-space, which poses
numerical challenges and requires much more training data.
In synthesis, each representation has its own advantages
and disadvantages and the choice between time-dependant
and autonomous motion primitives depends on the specific
application.

6.3.2 Stochastic information

Representing the demonstrated motion as a probability
distribution has several advantages. For example, in a
probabilistic framework the generalization to new a goal
(or a via-point) is achieved using conditioning on the new
goal (via-point), while the covariance computed from the
probabiltiy distribution can represent couplings between
different DoFs (Paraschos et al. 2013). As a matter of fact,
classical DMPs are deterministic and lack the stochastic
information on the modelled motion.

Ben Amor et al. (2014) proposed an approach to estimate
the predictive distribution P(w|y;.<) that relates the DMP
weights w and a partial trajectory y;.c observed for T
time instants. P(w|y1.) is used to estimate the most likely
weights given a partial movement and to reconstruct the
missing part of the trajectory. However, a full probabilistic
characterization of DMPs is still missing.

The ProMP framework (Paraschos et al. 2013) proposed
an alternative movement primitive representation that
contains information about the variability across different
demonstrations as well as different DoFs in the form of
a covariance matrix. This enables to explicitly encode
the couplings between different directions and to increase
the generalization by conditioning on a desired goal, via-
point, or intermediate velocity. The covariance computed
by ProMPs represent the variability and the correlation
in the demonstrations. In other representations, like GPR,
the covariance is a measure of the model uncertainty
due to the lack of training data. Kernelized Movement
Primitives (KMPs) (Huang et al. 2019; Silvério et al. 2019)
offer the possibility of modelling variability, correlation,
and uncertainty in the same framework. However, KMP’s
computational cost can be elevated compared to DMP in
longer trajectories due to the computation of the inverse of
the kernel matrix.

6.3.3 Closed-loop implementation and issues

A vast majority of methods employ DMPs only as a reference
trajectory generator for the closed-loop controller, which
then actually executes it. However, the DMPs can also be
used as a part of the close-loop controller itself and only a
few methods explored this concept. For example, in Peternel
et al. (2016a) the DMPs are directly torque generators for
exoskeleton actuators in the control loop, which is closed
by a feedback from the human user’s muscle activity.
Nevertheless, in such scenario the closed-loop stability and
passivity become crucial considerations that have to be
addressed and resolved before the wide-spread application
(Kramberger et al. 2018).
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6.3.4 Coping with high-dimensional inputs

One of the main limitations of DMP is that it encodes
human and robot trajectories explicitly with the time (i.e., 1—-
D input) which may lead to a synchronization issues since
human motions in the new evaluations could be significantly
different (e.g., faster/slower velocity) from the demonstrated
ones. In order to avoid synchronization problem, Ben Amor
et al. (2014) designed a time-alignment strategy, while
(Pervez et al. 2017a) estimated the phase signal during the
training using expectation-maximization (Bishop 2006).

As the DMP models trajectories using basis functions,
this works effectively when learning time-driven trajectories
(i.e., 1-D input). However, when demonstrations comprise
high-dimensional inputs, specifying the center vectors and
widths of basis functions becomes quite cumbersome.
Specifically, as discussed in (Bishop 2006) the number
of basis functions often increases exponentially when
the dimension of inputs increases. To alleviate this
limitation, some approaches investigated modern deep
learning techniques. Pahic¢ et al. (2020) used a deep NN
to synthesize DMP weights from an input image. The
classical DMP formulation is then used to generate motion
trajectories. Pervez et al. (2017b) used a CNN (LeCun et al.
2015) to predict 2-D task parameters (e.g., the position of
a target) from an input image and a fully connected NN to
retrieve the forcing term from the 2—-D parameters and the
phase variable. The CNN and the fully connected NN are
trained in two separate stages. The approach is promising,
but the separate training of the two networks increases the
pre-processing and complicates the learning process.

Alternative approaches in literature, such as GMM/GMR
(Calinon 2016), Task-Parameterized GMM (TP-GMM)
(Calinon 2016), KMP (Huang et al. 2019; Huang et al.
2021), can be directly applied for learning demonstrations
comprising high-dimensional inputs.

6.3.5 Multi-attractor systems

The well known second-order dynamic properties of the
DMPs, strive towards a single attractor system (Ijspeert et al.
2002a). The properties, e.g., convergence and modulation
of the motion, are well studied and implementations can be
found in many research papers. Because of the second-order
dynamics, the system becomes unstable if for example the
motion is reversed during the execution. In the past years,
two main approaches describing the reversibility problem
have been introduced. In the first approach (Nemec et al.
2018), reversibility is considered as leaning two separate
primitives, one for each direction of the motion. The
approach is promising, but does not reflect true reversibility,
because it uses one attractor point for each primitive.

On the other hand, (San Juan et al. 2019) introduced an
alternative formulation with two stable attractor systems.
The first attractor is defined at the starting point yo of
the trajectory and the subsequent one at the goal g,
the dynamical system between them guaranties a stable
convergence depending on the selected attractor. The
approach demonstrated true reversibility, while keeping all
the DMPs properties. Nevertheless, all questions have not
been resolved yet, the approach was evaluated on tasks and
joint space position trajectories. A proper formulation for
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Table 5. A summary of DMP features and limitations that have
been solved (V) or partially solved (I).

Limitation Related work Status
(Ning et al. 2011, 2012; Weitschat
Via-points and Aschemann 2018; Saveriano et al. v
2019; Zhou et al. 2019)
(Hoffmann et al. 2009; ljspeert et al.
Start-point 2013; Weitschat et al. 2013; Dragan v
et al. 2015)
(ljspeert et al. 2013; Ude et al. 2014;
Goal-point Abu-Dakka and Kyrki 2020; Dragan v
P et al. 2015; Weitschat and Aschemann
2018)
Obstacle (Park et al. 2008; Hoffmann et al.
avoidance 2009; Tan et al. 2011; Kim et al. 2015; v
Rai et al. 2017)
Geometry- (Pastor et al. 2009; Abu-Dakka et al.
oty 2015a; Ude et al. 2014; Saveriano g
data et al. 2019; Abu-Dakka and Kyrki
2020)
Probabilistic  (Ben Amor et al. 2014) |
Extrapolation (Pervez and Lee 2018; Zhou et al. I
P 2019)
High-dim (Pervez et al. 2017a; Pahié et al. 2020) I
input
i (Peternel et al. 2016a; Kramberger
Closed-loop etal. 2018) 1
Multi- (Nemec et al. 2018; San Juan et al. I
attractor 2019)

dealing with orientations e.g. quaternions in task space is still
missing,

7 Concluding remarks

Since their introduction in early 2000’s, DMPs have
established as one of the most used and popular
approaches for motor commands generator system in
robotics. Several authors have exploited and extended the
classical formulation to overcome some limitations and
fulfill different requirements. Their research resulted in a
large amount of papers published over the last two decades.

One of the aims of this paper is to categorize and review
the vast literature on DMPs. We took a systematic review
approach and automatically searched for DMP related papers
in a popular database. A manual inspection of the resulting
papers, guided by clear and unbiased criteria, led to the
papers included on this tutorial survey.

Another aim of our work is to provide a tutorial on
DMPs that presents the classical formulation and the key
extensions in rigorous mathematical terms. We made an
effort to unify the notation among different approaches in
order to make them easier to understand. Moreover, we
provide useful guidelines that guide the reader to select the
right approach for a given application. In the tutorial vein,
we have also searched for open-source implementation of the

9The referred work extended the classical DMP to different space like
SO(3) or ST, . Although formally similar, the extention to other
Riemannian manifolds like the Grassmannian or the Hyperbolic manifolds
is non-trivial and still not fully addressed.
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described approaches and released to the community several
implementations of DMP-based approaches.

Advantages of DMPs have been discussed as well as
their limitations and the open-issues. We have summarized
them in Table 5 where we also indicate the solved issues
and the one that require further investigation. In this
respect, as research on DMP is still very active, we provide
a comprehensive discussion that will help the reader to
understand what has been done in the field and where he can
put his research focus.
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