diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml
index 1a7d65c6c9c054b691b33dc7ce9539d52a4f16eb..1180735158dfb0eb5754f949dd7748895b621c62 100644
--- a/.gitlab-ci.yml
+++ b/.gitlab-ci.yml
@@ -14,13 +14,12 @@
   script:
     # Let's run the tests. Substitute `coverage = false` below, if you do not
     # want coverage results.
-    # - /opt/julia/bin/julia -e 'Pkg.clone(pwd()); Pkg.test("BallAndBeam",
-      # coverage = true)'
-    - /opt/julia/bin/julia -e 'Pkg.update();Pkg.test("BallAndBeam", coverage = true)'
+    - /opt/julia/bin/julia -e 'Pkg.rm("BallAndBeam");Pkg.clone(pwd()); Pkg.test("BallAndBeam",coverage = false)'
+    #- /opt/julia/bin/julia -e 'Pkg.update();Pkg.test("BallAndBeam", coverage = true)'
     # Comment out below if you do not want coverage results.
-    - /opt/julia/bin/julia -e 'Pkg.add("Coverage"); cd(Pkg.dir("BallAndBeam"));
-      using Coverage; cl, tl = get_summary(process_folder());
-      println("(", cl/tl*100, "%) covered")'
+    #- /opt/julia/bin/julia -e 'Pkg.add("Coverage"); cd(Pkg.dir("BallAndBeam"));
+    #  using Coverage; cl, tl = get_summary(process_folder());
+    #  println("(", cl/tl*100, "%) covered")'
 
 # Name a test and select an appropriate image.
 test:0.6.0:
diff --git a/README.md b/README.md
index 7592e7b06860ff063d31af5c4fa9dec55fc932e0..b82a5eaa05cfc7a2df5bd531f065ebdb6563063b 100644
--- a/README.md
+++ b/README.md
@@ -1,3 +1,6 @@
+[![build status](https://gitlab.control.lth.se/processes/BallAndBeam.jl/badges/master/pipeline.svg)](https://gitlab.control.lth.se/processes/BallAndBeam.jl/commits/master)
+[![coverage report](https://gitlab.control.lth.se/processes/BallAndBeam.jl/badges/master/coverage.svg)](https://gitlab.control.lth.se/processes/BallAndBeam.jl/commits/master)
+
 # Installation (specific to lab 1 FRTN35: Frequency response analysis)
 1. Open a terminal
 2. Type `mkdir FRTN35_lab1; cd FRTN35_lab1`
diff --git a/src/BallAndBeam.jl b/src/BallAndBeam.jl
index ec52790d3e654f46373403b0d3febcb717e5898c..2d185fd95d9151d853c354674aa26dc53e641e91 100644
--- a/src/BallAndBeam.jl
+++ b/src/BallAndBeam.jl
@@ -16,7 +16,7 @@ module BallAndBeam
 
 export run_experiment, fra, sortfqs,
 bopl, bopl!, nypl, nypl!, plot, fbdesign, ffdesign, opendoc
-export init_sysfilter, sysfilter!, run_control_2DOF # For documentation
+export SysFilter, run_control_2DOF # For documentation
 
 
 using LabProcesses, Plots, Polynomials, ControlSystems, ProgressMeter
@@ -139,7 +139,7 @@ nypl(G; kwargs...) = (plot();nypl!(G;kwargs...))
 	sysFB,L,T,C = fbdesign(G::AbstractMatrix, polevect, zerovect, gain)
 Frequency Compensation to determine polynominals in compensator C=S/R.
 Frequency responses for loop transfer, closed loop and controller are calculated.
-`sys` is of type `StateSpace`, to be used together with [`sysfilter!`](@ref)
+`sys` is of type `StateSpace`, to be used together with [`SysFilter!`](@ref)
 `G` is a frequency response matrix with ω in the first column and G(iω) in the second.
 """
 function fbdesign(G::AbstractMatrix, polevect, zerovect, gain)
@@ -156,7 +156,7 @@ end
 	sysFF,YR,FF = ffdesign(G, polevect, zerovect, gain)
 Feedforward filter BFF/AFF to shape transfer function from `r` to `y`.
 Frequency responses for closed loop with FF-filter and FF-filter are calculated.
-`sys` is of type `StateSpace`, to be used together with [`sysfilter!`](@ref)
+`sys` is of type `StateSpace`, to be used together with [`SysFilter!`](@ref)
 """
 function ffdesign(G, polevect, zerovect, gain)
 	sysFF,YR,_,FF = fbdesign(G, polevect, zerovect, gain)
@@ -179,20 +179,15 @@ function opendoc()
 	run(`xdg-open $docpath`)
 end
 
-"""
-	state = init_sysfilter(sys::StateSpace)
-Use together with [`sysfilter!`](@ref)
-"""
-init_sysfilter
 
 """
-	output = sysfilter!(state, sys::StateSpace, input)
-Returns the filtered output `y` in `y = Cx+Du, x'=Ax+Bu`
-
-This function is used to implement control loops where a signal is filtered through a
-dynamical system, i.e., `U(z) = C(z)E(z)`. Initialize `state` using [`init_sysfilter`](@ref).
+	Csf = SysFilter(sys::StateSpace)
+Returns an object used for filtering signals through LTI systems.
+Create a SysFilter object that can be used to implement control loops and simulators
+with LTI systems, i.e., `U(z) = C(z)E(z)`. To filter a signal `u` through the filter,
+call like `y = Csf(u)`. Calculates the filtered output `y` in `y = Cx+Du, x'=Ax+Bu`
 """
-sysfilter!
+SysFilter
 
 """
 	y,u,r = run_control_2DOF(process, sysFB[, sysFF]; duration = 10, reference(t) = sign(sin(2π*t)))
diff --git a/src/FRTN35_lab1.jl b/src/FRTN35_lab1.jl
index 623de70fb239dc626e2ae3ee30c1fe4a786ee326..2d4860e3718eefe9278470ba9db62b3c652d6a08 100644
--- a/src/FRTN35_lab1.jl
+++ b/src/FRTN35_lab1.jl
@@ -77,6 +77,6 @@ nb = 2 # Order of B polynomial
 arxtf = arx(h, y, u, na, nb) # Estimate trasfer function with ARX method
 
 mag, phase, ω = bode(arxtf, logspace(-1,3,200))
-bopl(G1, lab="Measured transfer function")
+bopl(G123, lab="Measured transfer function")
 plot!(ω, mag[:], subplot=1, lab = "ARX estimate")
 plot!(ω, phase[:], subplot=2)
diff --git a/src/arx.jl b/src/arx.jl
index f670c20b1cff6404fc73c6b4410215234457986f..5eecff1bb446b67e8cb6300696eccd17358670f8 100644
--- a/src/arx.jl
+++ b/src/arx.jl
@@ -86,10 +86,8 @@ function arx(h,y::AbstractVector{Float64}, u::AbstractVector{Float64}, na, nb; 
 
     if λ == 0
         w = A\y_train
-        method = :LS
     else
         w = (A'A + λ*eye(size(A,2)))\A'y_train
-        method = :LS_reg
     end
 
     a = [1; -w[1:na]]
diff --git a/test/runtests.jl b/test/runtests.jl
index ccd72776ab913fc6e4f28a588cc660168588281c..da621af70840675041437e0afb30791a2762892e 100644
--- a/test/runtests.jl
+++ b/test/runtests.jl
@@ -6,22 +6,7 @@ P = LabProcesses.Beam(0.01,0.)
 h = sampletime(P)
 @test h == 0.01
 
-function test_sysfilter()
-        N = 10
-        u = randn(N)
-        b = [1, 1]
-        a = [1, 0.1, 1]
-	  sys = ss(tf(b,a,1))
-	state = init_sysfilter(sys)
-       yf = filt(b,a,u)
-	  yff = similar(yf)
-	for i in eachindex(u)
-		yff[i] = sysfilter!(state, sys, u[i])[1]
-	end
-	@test sum(abs,yf - yff) < √(eps())
-end
 
-test_sysfilter()
 
 settling_time  = 1
 nbr_of_periods = 5
@@ -61,7 +46,7 @@ nbr_of_periods = 2
 w1_100 = logspace(-1,log10(300),500)
 G1     = fra(P, w1_100, amplitude=1, nbr_of_periods=nbr_of_periods, settling_time=settling_time)
 
-true_resp = freqresp(P.sys, w1_100)
+true_resp = freqresp(P.s.sys, w1_100)
 @test sum(abs, log.(abs.(G1[:,2])) - log.(abs.(true_resp[1][:]))) < 3.2 # Some numerical errors expected
 phase_id = angle.(G1[:,2]) |> ControlSystems.unwrap
 phase_true = angle.(true_resp[1][:]) |> ControlSystems.unwrap
@@ -87,7 +72,7 @@ nb = 5
 arxtf = arx(h, y[:], u, na, nb; λ = 0)
 
 w1_100 = logspace(-1,log10(100),500)
-true_resp = freqresp(P.sys, w1_100)
+true_resp = freqresp(P.s.sys, w1_100)
 phase_true = angle.(true_resp[1][:]) |> ControlSystems.unwrap
 arx_resp = freqresp(arxtf, w1_100)
 @test sum(abs, log.(abs.(arx_resp[1][:])) - log.(abs.(true_resp[1][:]))) < 1.25