
1 LabProcesses

Depth = 3

This package contains an (programming- as well as connection-) interface to serve as a base
for the implementation of lab-process software. The first example of an implementaiton of
this interface is for the ball-and-beam process, which is used in Lab1 FRTN35: frequency
response analysis of the beam. The lab is implemented in BallAndBeam.jl, a package that
makes use of LabProcesses.jl to handle the communication with the lab process and/or
a simulated version thereof. This way, the code written for frequency response analysis of
the beam can be run on another process implementing the same interface (or a simulated
version) by changeing a single line of code :)

1.1 Installation

1. Start julia by typing julia in a terminal, make sure the printed info says it’s

v0.6+ running. If not, visit julialang.org to get the latest release.

2. Install LabProcesses.jl using command Pkg.clone("https://gitlab.control.lth.se/processes/LabProcesses.jl.git")
Lots of packages will now be installed, this will take some time. If this is your first
time using Julia, you might have to run julia> Pkg.init() before you install any
packages.

2 How to implement a new process

2.0.1 1.

Locate the file interface.jl. When the package is installed, you find its directory under
/.julia/v0.6/LabProcesses/, if not, run julia> Pkg.dir("LabProcesses") to locate
the directory. (Alternatively, you can copy all definitions from /interface_implementation-
s/ballandbeam.jl instead. Maybe it’s easier to work from an existing implementaiton.)

2.0.2 2.

Copy all function definitions.

2.0.3 3.

Create a new file under /interface_implementations where you paste all the copied
definitions and implement them. See /interface_implementations/ballandbeam.jl for an
example.

1

https://gitlab.control.lth.se/processes/BallAndBeam.jl
https://julialang.org/downloads/
https://gitlab.control.lth.se/processes/LabProcesses.jl/blob/master/src/interface.jl
https://gitlab.control.lth.se/processes/LabProcesses.jl/blob/master/src/interface_implementations/ballandbeam.jl
https://gitlab.control.lth.se/processes/LabProcesses.jl/blob/master/src/interface_implementations/ballandbeam.jl
https://gitlab.control.lth.se/processes/LabProcesses.jl/blob/master/src/interface_implementations/ballandbeam.jl


Figure 1: block diagram

2.0.4 4.

Above all function implementations you must define the process type, e.g,

struct BallAndBeam <: PhysicalProcess
h::Float64
bias::Float64

end
BallAndBeam() = BallAndBeam(0.01, 0.0) # Constructor with default value of sample time

Make sure you inherit from PhysicalProcess or SimulatedProcess as appropriate. This
type must contains fields that hold information about everything that is relevant to a partic-
ular instance of the process. Different ballandbeam-process have different biases, hence this
must be stored. A simulated process would have to keep track of its state etc. in order to
implement the measure and control methods. See Types in julia documentation for additional
info regarding user defined types and (constructors)[https://docs.julialang.org/en/stable/-
manual/constructors/].

2.0.5 5.

Documentation of all interface functions is available in the file interface_documentation.jl

3 How to control a process

The interface AbstractProcess defines the functions control(P, u) and measure(P). These
functions can be used to implement your own control loops. A common loop with a
feedback controller and a feedforward filter on the reference is implemented in the function
run_control_2DOF, where the user can supply G1 and G4 in the diagram below, with the
process P = G2.

2

https://docs.julialang.org/en/stable/manual/types/#Composite-Types-1
https://gitlab.control.lth.se/processes/LabProcesses.jl/blob/master/src/interface_documentation.jl


The macro @periodically might come in handy if you want to implement your own loop.
Consider the following example, in which the loop body will be run periodically with a sample
time of h seconds.

for (i,t) = enumerate(0:h:duration)
@periodically h begin

y[i] = measure(P)
r[i] = reference(t)
u[i] = calc_control(y,r)
control(P, u[i])

end
end

Often one finds the need to implement a stateful controller, i.e., a function that has a memory
or state. To this end, the type SysFilter is provided. This type is used to implement control
loops where a signal is filtered through a dynamical system, i.e., U(z) = G1(z)E(z). Usage
is demonstrated below, which is a simplified implementation of the block diagram above
(transfer function- and signal names corresponds to the figure). First two SysFilter objects
are created, these objects can now be used as functions of an input, and return the filtered
output. The SysFilter type takes care of updating and remembering the state of the system
when called.

G1f = SysFilter(G1)
G4f = SysFilter(G4)
function calc_control(y,r)

rf = G4f(r)
e = rf-y
u = G1f(e)

end

G1 and G4 must here be represented by StateSpace types from ControlSystems.jl, e.g.,
G1 = ss(A,B,C,D). TransferFunction types can easily be converted to a StateSpace by
Gss = ss(Gtf). Continuous time systems can be discretized using Gd = c2d(Gc, h)[1].
(The sample time of a process is available through h = sampletime(P).)

4 How to implement a Simulated Process

4.1 Linear process

This is very easy, just get a discrete time StateSpace model of your process (if you have
a transfer function, Gss = ss(Gtf) will do the trick, if you have continuous time, Gd =
c2d(Gc,h)[1] is your friend).
You now have to implement the methods control and measure for your simulated type. The
implementation for BeamSimulator is shown below

control(p::BeamSimulator, u) = p.Gf(u)
measure(P) = vecdot(p.Gf.sys.C, p.Gf.state)

3

http://juliacontrol.github.io/ControlSystems.jl/latest/lib/constructors/#ControlSystems.ss
https://github.com/JuliaControl/ControlSystems.jl


The control method accepts a control signal (u) and propagates the system state (p.Gf.state)
forward using the statespace model (p.Gf.sys) of the beam. The object Gf (of type
SysFilter) is familiar from the "Control" section above. What it does is essentially (simpli-
fied)

function Gf(input)
sys = Gf.sys
Gf.state .= sys.A*Gf.state + sys.B*input
output = sys.C*Gf.state + sys.D*input

end

hence, it just performs one iteration of

x′ = Ax + Bu (1)

y = Cx + Du (2)

The measure method performs the computation y = Cx, the reason for the call to vecdot is
that vecdot produces a scalar output, whereas C*x produces a 1-element Matrix. A scalar
output is preferred in this case since the Beam is SISO.
It should now be obvious which fields are required in the BeamSimulator type. It must know
which sample time it has been discretized with, as well as its discrete-time system model. It
must also remember the current state of the system. This is not needed in a physical process
since it kind of remembers its own state. The system model and its state is conveniently
covered by the type SysFilter, which handles filtering of a signal through an LTI system.
The full type specification for BeamSimulator is given below

struct BeamSimulator <: SimulatedProcess
h::Float64
Gf::SysFilter
BeamSimulator() = new(0.01, SysFilter(beam_system, 0.01))
BeamSimulator(h::Real) = new(Float64(h), SysFilter(beam_system, h))

end

It contains three fields and two inner constructors. The constructors initializes the system
filter by creating a SysFilter. The variable beam_system is already defined outside the type
specification. One of the constructors provides a default value for the sample time, in case
the user is unsure about a reasonable value.

4.2 Non-linear process

Your first option is to linearize the process and proceed like above. Other options include

1. Make control perform forward Euler, i.e., x[t+1] = x[t] + f(x[t],u[t])*h for a
general system model x′ = f(x, u); y = g(x, u) and sample time h.

4



2. Integrate the system model using some fancy method like Runge-Kutta. See Differen-
tialEquations.jl for discrete-time solving of ODEs (don’t be discouraged, this is almost
as simple as forward Euler above).

5 Exported functions and types

Modules = [LabProcesses]
Private = false
Pages = ["LabProcesses.jl", "controllers.jl", "reference_generators.jl", "utilities.jl"]

6 Process interface specification

All processes must implement the following interface. See the existing implementations in
the folder interface_implementations for guidance.

Modules = [LabProcesses]
Private = false
Pages = ["interface_documentation.jl"]

7 Index

5

http://docs.juliadiffeq.org/stable/types/discrete_types.html
http://docs.juliadiffeq.org/stable/types/discrete_types.html

	LabProcesses
	Installation

	How to implement a new process
	1.
	2.
	3.
	4.
	5.


	How to control a process
	How to implement a Simulated Process
	Linear process
	Non-linear process

	Exported functions and types
	Process interface specification
	Index

