index.tex 13.9 KB
Newer Older
Fredrik Bagge Carlson's avatar
Fredrik Bagge Carlson committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
\documentclass[12pt,a4paper]{article}

\usepackage[a4paper,text={16.5cm,25.2cm},centering]{geometry}
\usepackage{lmodern}
\usepackage{amssymb,amsmath}
\usepackage{graphicx}
\usepackage{microtype}
\usepackage{hyperref}
\setlength{\parindent}{0pt}
\setlength{\parskip}{1.2ex}

\hypersetup
       {   pdfauthor = {  },
           pdftitle={  },
           colorlinks=TRUE,
           linkcolor=black,
           citecolor=blue,
           urlcolor=blue
       }




\usepackage[T1]{fontenc}
\usepackage{textcomp}
\usepackage{upquote}
\usepackage{listings}
\usepackage{xcolor}
\lstset{
    basicstyle=\ttfamily\footnotesize,
    upquote=true,
    breaklines=true,
    keepspaces=true,
    showspaces=false,
    columns=fullflexible,
    showtabs=false,
    showstringspaces=false,
    escapeinside={(*@}{@*)},
    extendedchars=true,
}
\newcommand{\HLJLt}[1]{#1}
\newcommand{\HLJLw}[1]{#1}
\newcommand{\HLJLe}[1]{#1}
\newcommand{\HLJLeB}[1]{#1}
\newcommand{\HLJLo}[1]{#1}
\newcommand{\HLJLk}[1]{\textcolor[RGB]{148,91,176}{\textbf{#1}}}
\newcommand{\HLJLkc}[1]{\textcolor[RGB]{59,151,46}{\textit{#1}}}
\newcommand{\HLJLkd}[1]{\textcolor[RGB]{214,102,97}{\textit{#1}}}
\newcommand{\HLJLkn}[1]{\textcolor[RGB]{148,91,176}{\textbf{#1}}}
\newcommand{\HLJLkp}[1]{\textcolor[RGB]{148,91,176}{\textbf{#1}}}
\newcommand{\HLJLkr}[1]{\textcolor[RGB]{148,91,176}{\textbf{#1}}}
\newcommand{\HLJLkt}[1]{\textcolor[RGB]{148,91,176}{\textbf{#1}}}
\newcommand{\HLJLn}[1]{#1}
\newcommand{\HLJLna}[1]{#1}
\newcommand{\HLJLnb}[1]{#1}
\newcommand{\HLJLnbp}[1]{#1}
\newcommand{\HLJLnc}[1]{#1}
\newcommand{\HLJLncB}[1]{#1}
\newcommand{\HLJLnd}[1]{\textcolor[RGB]{214,102,97}{#1}}
\newcommand{\HLJLne}[1]{#1}
\newcommand{\HLJLneB}[1]{#1}
\newcommand{\HLJLnf}[1]{\textcolor[RGB]{66,102,213}{#1}}
\newcommand{\HLJLnfm}[1]{\textcolor[RGB]{66,102,213}{#1}}
\newcommand{\HLJLnp}[1]{#1}
\newcommand{\HLJLnl}[1]{#1}
\newcommand{\HLJLnn}[1]{#1}
\newcommand{\HLJLno}[1]{#1}
\newcommand{\HLJLnt}[1]{#1}
\newcommand{\HLJLnv}[1]{#1}
\newcommand{\HLJLnvc}[1]{#1}
\newcommand{\HLJLnvg}[1]{#1}
\newcommand{\HLJLnvi}[1]{#1}
\newcommand{\HLJLnvm}[1]{#1}
\newcommand{\HLJLl}[1]{#1}
\newcommand{\HLJLld}[1]{\textcolor[RGB]{148,91,176}{\textit{#1}}}
\newcommand{\HLJLs}[1]{\textcolor[RGB]{201,61,57}{#1}}
\newcommand{\HLJLsa}[1]{\textcolor[RGB]{201,61,57}{#1}}
\newcommand{\HLJLsb}[1]{\textcolor[RGB]{201,61,57}{#1}}
\newcommand{\HLJLsc}[1]{\textcolor[RGB]{201,61,57}{#1}}
\newcommand{\HLJLsd}[1]{\textcolor[RGB]{201,61,57}{#1}}
\newcommand{\HLJLsdB}[1]{\textcolor[RGB]{201,61,57}{#1}}
\newcommand{\HLJLsdC}[1]{\textcolor[RGB]{201,61,57}{#1}}
\newcommand{\HLJLse}[1]{\textcolor[RGB]{59,151,46}{#1}}
\newcommand{\HLJLsh}[1]{\textcolor[RGB]{201,61,57}{#1}}
\newcommand{\HLJLsi}[1]{#1}
\newcommand{\HLJLso}[1]{\textcolor[RGB]{201,61,57}{#1}}
\newcommand{\HLJLsr}[1]{\textcolor[RGB]{201,61,57}{#1}}
\newcommand{\HLJLss}[1]{\textcolor[RGB]{201,61,57}{#1}}
\newcommand{\HLJLssB}[1]{\textcolor[RGB]{201,61,57}{#1}}
\newcommand{\HLJLnB}[1]{\textcolor[RGB]{59,151,46}{#1}}
\newcommand{\HLJLnbB}[1]{\textcolor[RGB]{59,151,46}{#1}}
\newcommand{\HLJLnfB}[1]{\textcolor[RGB]{59,151,46}{#1}}
\newcommand{\HLJLnh}[1]{\textcolor[RGB]{59,151,46}{#1}}
\newcommand{\HLJLni}[1]{\textcolor[RGB]{59,151,46}{#1}}
\newcommand{\HLJLnil}[1]{\textcolor[RGB]{59,151,46}{#1}}
\newcommand{\HLJLnoB}[1]{\textcolor[RGB]{59,151,46}{#1}}
\newcommand{\HLJLoB}[1]{\textcolor[RGB]{102,102,102}{\textbf{#1}}}
\newcommand{\HLJLow}[1]{\textcolor[RGB]{102,102,102}{\textbf{#1}}}
\newcommand{\HLJLp}[1]{#1}
\newcommand{\HLJLc}[1]{\textcolor[RGB]{153,153,119}{\textit{#1}}}
\newcommand{\HLJLch}[1]{\textcolor[RGB]{153,153,119}{\textit{#1}}}
\newcommand{\HLJLcm}[1]{\textcolor[RGB]{153,153,119}{\textit{#1}}}
\newcommand{\HLJLcp}[1]{\textcolor[RGB]{153,153,119}{\textit{#1}}}
\newcommand{\HLJLcpB}[1]{\textcolor[RGB]{153,153,119}{\textit{#1}}}
\newcommand{\HLJLcs}[1]{\textcolor[RGB]{153,153,119}{\textit{#1}}}
\newcommand{\HLJLcsB}[1]{\textcolor[RGB]{153,153,119}{\textit{#1}}}
\newcommand{\HLJLg}[1]{#1}
\newcommand{\HLJLgd}[1]{#1}
\newcommand{\HLJLge}[1]{#1}
\newcommand{\HLJLgeB}[1]{#1}
\newcommand{\HLJLgh}[1]{#1}
\newcommand{\HLJLgi}[1]{#1}
\newcommand{\HLJLgo}[1]{#1}
\newcommand{\HLJLgp}[1]{#1}
\newcommand{\HLJLgs}[1]{#1}
\newcommand{\HLJLgsB}[1]{#1}
\newcommand{\HLJLgt}[1]{#1}


\begin{document}



\section{LabProcesses}
\begin{verbatim}
Depth = 3
\end{verbatim}
This package contains an (programming- as well as connection-) interface to serve as a base for the implementation of lab-process software. The first example of an implementaiton of this interface is for the ball-and-beam process, which is used in Lab1 FRTN35: frequency response analysis of the beam. The lab is implemented in \href{https://gitlab.control.lth.se/processes/BallAndBeam.jl}{BallAndBeam.jl}, a package that makes use of \texttt{LabProcesses.jl} to handle the communication with the lab process and/or a simulated version thereof. This way, the code written for frequency response analysis of the beam can be run on another process implementing the same interface (or a simulated version) by changeing a single line of code :)

\subsection{Installation}
\begin{itemize}
\item[1. ] Start julia by typing \texttt{julia} in a terminal, make sure the printed info says it's

\end{itemize}
\texttt{v0.6+} running. If not, visit \href{https://julialang.org/downloads/}{julialang.org} to get the latest release.

\begin{itemize}
\item[2. ] Install LabProcesses.jl using command \texttt{Pkg.clone("https://gitlab.control.lth.se/processes/LabProcesses.jl.git")} Lots of packages will now be installed, this will take some time. If this is your first time using Julia, you might have to run \texttt{julia> Pkg.init()} before you install any packages.

\end{itemize}
\section{How to implement a new process}
\subsubsection{1.}
Locate the file \href{https://gitlab.control.lth.se/processes/LabProcesses.jl/blob/master/src/interface.jl}{interface.jl}. When the package is installed, you find its directory under \texttt{{\sim}/.julia/v0.6/LabProcesses/}, if not, run \texttt{julia> Pkg.dir("LabProcesses")} to locate the directory. (Alternatively, you can copy all definitions from \href{https://gitlab.control.lth.se/processes/LabProcesses.jl/blob/master/src/interface_implementations/ballandbeam.jl}{/interface\_implementations/ballandbeam.jl} instead. Maybe it's easier to work from an existing implementaiton.)

\subsubsection{2.}
Copy all function definitions.

\subsubsection{3.}
Create a new file under \texttt{/interface\_implementations} where you paste all the copied definitions and implement them. See \href{https://gitlab.control.lth.se/processes/LabProcesses.jl/blob/master/src/interface_implementations/ballandbeam.jl}{/interface\_implementations/ballandbeam.jl} for an example.

\subsubsection{4.}
Above all function implementations you must define the process type, e.g,

\begin{verbatim}
struct BallAndBeam <: PhysicalProcess
    h::Float64
    bias::Float64
end
BallAndBeam() = BallAndBeam(0.01, 0.0) # Constructor with default value of sample time
\end{verbatim}
Make sure you inherit from \texttt{PhysicalProcess} or \texttt{SimulatedProcess} as appropriate. This type must contains fields that hold information about everything that is relevant to a particular instance of the process. Different ballandbeam-process have different biases, hence this must be stored. A simulated process would have to keep track of its state etc. in order to implement the measure and control methods. See \href{https://docs.julialang.org/en/stable/manual/types/#Composite-Types-1}{Types in julia documentation} for additional info regarding user defined types and (constructors)[https://docs.julialang.org/en/stable/manual/constructors/].

\subsubsection{5.}
Documentation of all interface functions is available in the file \href{https://gitlab.control.lth.se/processes/LabProcesses.jl/blob/master/src/interface_documentation.jl}{interface\_documentation.jl}

\section{How to control a process}
The interface \texttt{AbstractProcess} defines the functions \texttt{control(P, u)} and \texttt{measure(P)}. These functions can be used to implement your own control loops. A common loop with a feedback controller and a feedforward filter on the reference is implemented in the function \href{@ref}{\texttt{run\_control\_2DOF}}, where the user can supply $G_1$ and $G_4$ in the diagram below, with the process $P=G_2$. \begin{figure}
\centering
\includegraphics{feedback4.png}
\caption{block diagram}
\end{figure}


The macro \texttt{@periodically} might come in handy if you want to implement your own loop. Consider the following example, in which the loop body will be run periodically with a sample time of \texttt{h} seconds.

\begin{verbatim}
for (i,t) = enumerate(0:h:duration)
    @periodically h begin
        y[i] = measure(P)
        r[i] = reference(t)
        u[i] = calc_control(y,r)
        control(P, u[i])
    end
end
\end{verbatim}
Often one finds the need to implement a stateful controller, i.e., a function that has a memory or state. To this end, the type \href{@ref}{\texttt{SysFilter}} is provided. This type is used to implement control loops where a signal is filtered through a dynamical system, i.e., \texttt{U(z) = G1(z)E(z)}. Usage is demonstrated below, which is a simplified implementation of the block diagram above (transfer function- and signal names corresponds to the figure). First two \texttt{SysFilter} objects are created, these objects can now be used as functions of an input, and return the filtered output. The \texttt{SysFilter} type takes care of updating and remembering the state of the system when called.

\begin{verbatim}
G1f = SysFilter(G1)
G4f = SysFilter(G4)
function calc_control(y,r)
    rf = G4f(r)
    e  = rf-y
    u  = G1f(e)
end
\end{verbatim}
\texttt{G1} and \texttt{G4} must here be represented by \href{http://juliacontrol.github.io/ControlSystems.jl/latest/lib/constructors/#ControlSystems.ss}{\texttt{StateSpace}} types from \href{https://github.com/JuliaControl/ControlSystems.jl}{\texttt{ControlSystems.jl}}, e.g., \texttt{G1 = ss(A,B,C,D)}. \texttt{TransferFunction} types can easily be converted to a \texttt{StateSpace} by \texttt{Gss = ss(Gtf)}. Continuous time systems can be discretized using \texttt{Gd = c2d(Gc, h)[1]}. (The sample time of a process is available through \texttt{h = sampletime(P)}.)

\section{How to implement a Simulated Process}
\subsection{Linear process}
This is very easy, just get a discrete time \texttt{StateSpace} model of your process (if you have a transfer function, \texttt{Gss = ss(Gtf)} will do the trick, if you have continuous time, \texttt{Gd = c2d(Gc,h)[1]} is your friend).

You now have to implement the methods \texttt{control} and \texttt{measure} for your simulated type. The implementation for \texttt{BeamSimulator} is shown below

\begin{verbatim}
control(p::BeamSimulator, u) = p.Gf(u)
measure(P) = vecdot(p.Gf.sys.C, p.Gf.state)
\end{verbatim}
The \texttt{control} method accepts a control signal (\texttt{u}) and propagates the system state (\texttt{p.Gf.state}) forward using the statespace model (\texttt{p.Gf.sys}) of the beam. The object \texttt{Gf} (of type \href{@ref}{\texttt{SysFilter}}) is familiar from the "Control" section above. What it does is essentially (simplified)

\begin{verbatim}
function Gf(input)
    sys       = Gf.sys
    Gf.state .= sys.A*Gf.state + sys.B*input
    output    = sys.C*Gf.state + sys.D*input
end
\end{verbatim}
hence, it just performs one iteration of


\begin{align}
x' = Ax + Bu
\end{align}

\begin{align}
y  = Cx + Du
\end{align}
The \texttt{measure} method performs the computation \texttt{y = Cx}, the reason for the call to \texttt{vecdot} is that \texttt{vecdot} produces a scalar output, whereas \texttt{C*x} produces a 1-element \texttt{Matrix}. A scalar output is preferred in this case since the \texttt{Beam} is SISO.

It should now be obvious which fields are required in the \texttt{BeamSimulator} type. It must know which sample time it has been discretized with, as well as its discrete-time system model. It must also remember the current state of the system. This is not needed in a physical process since it kind of remembers its own state. The system model and its state is conveniently covered by the type \href{@ref}{\texttt{SysFilter}}, which handles filtering of a signal through an LTI system. The full type specification for \texttt{BeamSimulator} is given below

\begin{verbatim}
struct BeamSimulator <: SimulatedProcess
    h::Float64
    Gf::SysFilter
    BeamSimulator() = new(0.01, SysFilter(beam_system, 0.01))
    BeamSimulator(h::Real) = new(Float64(h), SysFilter(beam_system, h))
end
\end{verbatim}
It contains three fields and two inner constructors. The constructors initializes the system filter by creating a \href{@ref}{\texttt{SysFilter}}. The variable \texttt{beam\_system} is already defined outside the type specification. One of the constructors provides a default value for the sample time, in case the user is unsure about a reasonable value.

\subsection{Non-linear process}
Your first option is to linearize the process and proceed like above. Other options include

\begin{itemize}
\item[1. ] Make \texttt{control} perform forward Euler, i.e., \texttt{x[t+1] = x[t] + f(x[t],u[t])*h} for a general system model $x' = f(x,u); y = g(x,u)$ and sample time $h$.


\item[2. ] Integrate the system model using some fancy method like Runge-Kutta. See \href{http://docs.juliadiffeq.org/stable/types/discrete_types.html}{DifferentialEquations.jl} for discrete-time solving of ODEs (don't be discouraged, this is almost as simple as forward Euler above).

\end{itemize}
\section{Exported functions and types}
\begin{verbatim}
Modules = [LabProcesses]
Private = false
Pages   = ["LabProcesses.jl", "controllers.jl", "reference_generators.jl", "utilities.jl"]
\end{verbatim}
\section{Process interface specification}
All processes must implement the following interface. See the existing implementations in the folder \texttt{interface\_implementations} for guidance.

\begin{verbatim}
Modules = [LabProcesses]
Private = false
Pages   = ["interface_documentation.jl"]
\end{verbatim}
\section{Index}
\begin{verbatim}

\end{verbatim}


\end{document}