diff --git a/CheckAndersLMI.m b/CheckAndersLMI.m
deleted file mode 100644
index 325b68e0705e1b8b228429b4a51f97b8710af8ed..0000000000000000000000000000000000000000
--- a/CheckAndersLMI.m
+++ /dev/null
@@ -1,195 +0,0 @@
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-%
-% This code simulates distributed minimax adaptive control algorithm for 
-% uncertain networked systems.
-%
-% Copyrights Authors: 1) Venkatraman Renganathan - Lund University, Sweden.
-%                     2) Anders Rantzer - Lund University, Sweden.
-%                     3) Olle Kjellqvist - Lund University, Sweden.
-%
-% Email: venkatraman.renganathan@control.lth.se
-%        anders.rantzer@control.lth.se
-%        olle.kjellqvist@control.lth.se
-%
-% Date last updated: 20 October, 2023.
-%
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-% Make a fresh start
-clear all; close all; clc;
-
-% set properties for plotting
-set(groot,'defaultAxesTickLabelInterpreter','latex');  
-set(groot,'defaulttextinterpreter','latex');
-set(groot,'defaultLegendInterpreter','latex');
-
-% Flag deciding whether to generate new data or load existing data
-% dataPrepFlag = 1: Generates new network data
-% dataPrepFlag = 0: Loads existing network data
-dataPrepFlag = 1;
-
-% When dataPrepFlag = 1: Generate new data for network
-if(dataPrepFlag)
-    
-    disp('Generating new data for network as dataPrepFlag = 1.');
-    
-    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-    % Define the network data using graph structure
-    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-    
-    % Specify Number of nodes
-    N = 6;    
-    % Specify Number of edges
-    M = N - 1;
-    % Create a random graph with N nodes and M edges 
-    [adjMatrix, I, graphVariable] = GenerateRandomTreeGraph(N);
-    % Get number of edges on graph
-    numEdges = size(graphVariable.Edges.EndNodes, 1);
-    fprintf('Generated random graph is acyclic and has only one component \n');
-
-    % Plot the graph - large graph can be time consuming & may not be informative 
-    if N <= 300  
-        plot(graphVariable);
-    else
-        disp('The graph is too large to display.');
-    end
-
-    % Infer state and input dimensions
-    [n,m] = size(I);
-
-    % Get the degree vector
-    degreeVec = sum(adjMatrix, 1)';
-
-    % Get one of the node indeces with maximum degree for plotting
-    [~, maxDegreeNodeIndex] = max(degreeVec);
-
-    % Form input matrix B with parameter b and matrix I such that B/b = I
-    b = 0.1;
-    B = b*I;
-
-    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-    % Prepare the dynamics matrix A for each Model
-    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-    % Specify the number of possible plant network parameters
-    numModels = 2;
-
-    % Populate all the possible plant models
-    for dIter = 1:numModels      
-        % Placeholders for a matrix for each component
-        ai = zeros(n, 1);
-        % Flag for stopping while loop
-        dynamicsPreparationFlag = 1;
-        % Counter for populating ai vector
-        iter = 1;
-        % Loop through until ai^2 + bb^{T} < ai is satisfied
-        while dynamicsPreparationFlag
-            % Generate a random ai
-            ai(iter, 1) = rand;
-            % Check condition
-            if(ai(iter, 1)^2 - ai(iter, 1) + 2*b^2*degreeVec(iter, 1) < 0)        
-                iter = iter + 1;    
-            end
-            % if counter exceeds limit, form the A matrix & stop while loop
-            if(iter > n)
-                A = diag(ai);
-                dynamicsPreparationFlag = 0;
-            end
-        end
-        % Prepare A and B matrices
-        AMatrices{dIter} = A;
-        BMatrices{dIter} = B; 
-        
-    end
-    
-    AVector = zeros(n, numModels);    
-    for dIter = 1:numModels
-        AVector(:, dIter) = diag(AMatrices{dIter});    
-    end
-    Arowvectors = {};
-    for i = 1:N
-        Arowvectors{i} = AVector(i, :);
-    end
-    Acombs = combvec(Arowvectors{:}).';
-    % Find min & max a values for each node from all possible numModels values
-    minAVector = min(AVector, [], 2);
-    maxAVector = max(AVector, [], 2);
-    % Form the Max A matrix using maxAVector
-    maxAMatrix = diag(maxAVector);
-    % Find the network level global minimum and maximum a value
-    netMinA = min(minAVector);
-    netMaxA = max(maxAVector);
-    
-    % Infer the number of possible plants
-    numPlants = numModels^(N);
-    
-    % Compute Hinfty control for each possible plants
-    for i = 1:numPlants
-        APossibles{i} = diag(Acombs(i, :));
-        BPossibles{i} = B;
-        % Compute H_infinity control as u = Kx, with K = B'*(A-I)^{-1}
-        KinfPossibles{i} =  BPossibles{i}'*inv(APossibles{i} - eye(n));
-    end       
-    disp('Finished Computing H_infinity Control Gains');
-    
-    % Check Anders LMI for each possible plant
-    gamma = 7;
-    P_non = (2/(1 - netMaxA))*eye(n);
-    P_non_inv = ((1 - netMaxA)/2)*eye(n);
-    P_wt = inv(P_non_inv - gamma^(-2)*eye(n));
-    Q = eye(n);
-    R = eye(M);
-    happy = 1;
-    
-    for k = 1:numPlants
-        Ak = APossibles{k};
-        if(happy == 0)
-            break;
-        end
-        for l = 1:numPlants
-            Al = APossibles{l};
-            if(happy == 0)
-                break;
-            end
-            for p = 1:numPlants
-                if(happy == 0)
-                    break;
-                end
-                if(k ~= l && l == p)
-                    continue;
-                end
-                Kp = KinfPossibles{p};
-                A_cl_kp = Ak + B*Kp;
-                A_cl_lp = Al + B*Kp;           
-                AndersRHS = Q + Kp'*R*Kp + 0.25*(A_cl_kp+A_cl_lp)'*P_wt*(A_cl_kp+A_cl_lp) - 0.25*gamma^(2)*(A_cl_kp-A_cl_lp)'*(A_cl_kp-A_cl_lp);
-                AndersLMI = P_non - AndersRHS;
-                if(all(eig(AndersLMI)) >= 0)
-                    happy = 1;
-                else
-                    happy = 0;
-                end
-            end
-        end
-    end
-    
-    
-    % Finished Checking Anders LMI
-    if(happy == 1)
-        disp('Choice of Pkl matrices satisfy Anders LMI.');
-    else
-        disp('Choice of Pkl matrices do not satisfy Anders LMI.');
-    end
-    
-    % Save the generated network data into mat file.
-    disp('Saving the generated small network data.');
-    %save('smallNetworkDynamicsData.mat');
-else
-    disp('Loading existing data for small network as dataPrepFlag = 0.');
-    %load('smallNetworkDynamicsData.mat');
-end
-
-  
-
-