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Abstract: 1In this project, a dual-mobile robot with a double tracking system is presented.
It consists of a delta-based robot mounted over a 3-wheeled omnidirectional robot for fine and
wide positioning, respectively. The whole system uses a PID controller to move the whole
system, and itn particular its tool center point (TCP) while and computes its position/orientation
in real-time using the feedback from the Lighthouse positioning system (Base stations 2.0
from HTC Vive and a Lighthouse deck sensor from Crazyflie 2.0) and a camera positioning
system (Raspberry camera with OpenCV computer vision library) looking downwards to the floor.

This setup aims to achieve high precision positioning (by minimizing the error between the set goal
point and the real goal position) in a known environment (testing room) combining the accuracy
of the two tracking systems while the robot performs a coarse navigation (omnidirectional
robot) followed by a fine positioning (delta robot) towards the set point. Later on, we will try
to optimize/maximize the goal position accuracy even more by means of: tuning the Kalman
filter position estimation, selecting proper variables for both kinematic robot models, tuning PID

controller parameters, and exploring several hardware and software setups.

1. Introduction

The design and control of mobile robots have been gaining
importance in the technical field since their invention thanks
to their multiple applications. Mobile robots are now widely
used for surveillance, inspection and transportation tasks [3],
for which new and improved techniques of positioning are
important for studying.

Two of the most studied design challenges regarding mo-
bile robots are accurate positioning and global localization
with respect to a reference position frame. Since there are
numerous applications where the navigation and localization
are critical factors (often in scientific tasks) then, high maneu-
verability, precision positioning and smooth controllability
are studied and implemented. Thus, these two challenges are
assessed in this project with our setup.

In this project, the localization and positioning problems
are assessed in two subtasks, where the first task is managed by
the omnidirectinal robot (coarse navigation) and the second
by the delta robot (fine positioning),

* The first one is reaching a set position (Xgoai, Ygoat)
given an initial position (Xinitials Yinitiar) in @ global
(world) coordinate reference frame [ X,,, Y,, | —see Fig-
ure 1— with the omnidirectional robot. Thus, we are in-
terested in finding a trajectory with respect to this global
reference frame from the initial robot pose through a cer-
tain time (xq (1), yo (), 8 (t)) with the highest possible
accuracy.

* The next subtask is to reach the same set position
(Xgoal Ygoar) With the delta robot once the omnidi-
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Figure 1. Flowchart of the process. The sequence ends when the

error between the achieved poisition/orientation and the set point is
small enough to consider applying a control signal. Notice that the
PC interface (PC Level) is just a dummy interface for interacting with
the Raspberry Pi. At this level we only perform variable inputs or
monitoring (visualizing). On the Robot Level all the calculations and
control are performed.

rectional robot has arrived to this desired set position.
Then, the remaining distance difference (error) will be
passed to the delta robot and computed as follows:
Ay = Xgoal — Xcurrent and Ay = Ygoal — Ycurrent in
a robot coordinate reference frame [X,,Y,], see Fig-
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Figure2. The 3-wheeled omnidirectional robot used in this project.
In this picture, neither the electronics nor the delta-frame have been
installed in order to clearly show the robot frame and omniwheels.

ure 1. In other words, we will minimize Ay and A,
by translating the delta robot from the current position
to the desired goal position while the omnidirectional
robot is locked in that position.

A brief introduction and background theory of all the sub-
sytems involved in the project are included as follows in order
to motivate the functioning of the realized overall process, see
Figure 1.

1.1 OmniWheel Robot

An omnidirectional mobile robot platform can perform trans-
lations in any direction without the need of re-orientation. This
capability adds mobility to the frame and increases the robot’s
degree of freedom. This feature is achieved by using the re-
sulting vectorial forces and velocities of the omnidirectional
wheels which are controlled using its kinematics. Magnitudes
as the speed, acceleration and strength of the motors are neces-
sary in order to calculate the parameters of the robot model. [5]

The preferred setup for the robot platform is the holo-
nomic which results from attaching omnidirectional wheels
to a frame. The resulting vehicle is capable of driving along
paths with independent orientation and translation. [2]

In this project, the selected setup is a 3-degree-of-freedom
(vertical, horizontal and rotation) hexagonal frame which con-
tains holders for the omni-wheels equally separated at 120 o
from each other. Additionally, it has 3 other mounts for the
delta robot motors, see Figure 2.

1.2 Delta Robot

A Delta robot is a parallel kinematic robot with 3 degrees
of freedom (x,y,z). It is known to have the ability to per-
form dexterous movements in the given workspace. This
robot is generally used in industries [10] with requirements
movements in relatively small areas. It generally is able to
pick-and-place light-weighted objects with high accuracy dur-
ing short cycle-times.

In this project, it is adequate to use this robot because
its geometry can achieve fine positioning. It is known that

Figure 3. The Delta-mounted robot over the omni-wheeled based
robot used in this project

this type of robot has serious disadvantages of a relatively
limited workspace [6]. However, it is compensated with the
robust and light design which mantains the repeatability of the
movements. In addition, the advantage in this project is that its
motors are fixed in the same rigid frame as the omnidirectional
robot, reducing the shivering and lowering the center of mass
of the whole robot. [10].

The Delta robot will house the flight sensor in its end
effector, see Figure 3. By doing so, it is possible to track the
position at all times.

1.3 The Lighthouse Positioining System

In previous works, a couple of approaches regarding mobile
robots with the Lighthouse positioning system have been
developed. [4, 9]. Here, we can see how good is this localiza-
tion system when it comes to extract a relative position and
orientation from a sensor. It is relatively low-cost (compared
to other positioning methods) and can be integrated to any
robotic platform with admirable results.

The lighthouse flight deck of the Crazyflie combined
with the HTC-Vive/SteamVR lighthouse base stations allows
a global positioning of the Crazyflie drones [1]. The data
obtained from the lighthouse beacons is in essence a pair of
angles describing the direction from the base station to each
light sensor on the lighthouse flight deck. All measurements
and position calculations are performed in the Crazyflie main
board [1] which allows for introducing multiple robots in the
same area without changing anything in the setup.

: \ .
thousé Deck (Cr&yﬂig 2.0)

Figure 4. The Lighthouse deck over a crazyflie board. Notice the
4 photo-sensitive sensors on the Lighthouse deck
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Figure 5. Crazyflie Lighthouse deck and its 4-photo-sensitive sen-
sors detecting the sweep of the light planes emitted from the beacons
(Base Stations 2.0). Taken from [1].

The crazyflie sensor (Lighthouse deck) —see Figure 4—
captures the infrarred light plane sweeps from the rotary
drums in the beacons (HTC Base Stations) —see Figure 5—
and can perform calculations over the angles of those light
planes resulting in accurate position estimations (e.g. Kalman
Filter estimation).

The Lighthouse system of Vive was originally in-
vented/developed as a tracking system for virtual reality
applications. Nevertheless, its price and robusteness has made
these devices very appropiate for research robotics like this
one.

In this project, we are restricting the scope of the posti-
ioning system to a plane XY parallel to the floor without the
height component. We will use the Kalman Filter positioning
approach to tackle down the wide/fine positioning problem for
the robot.

2. Modeling

In this section, we will mathematically unravel the positioning
process in the different subsystems models. This will show
how the navigation process is performed. The kinematics
derivative in this section are based on the work in [10, 9,
3] and applied to our robots. Thus, we have,

2.1 Omnidirectional robot kinematics

Since we are using a 3-wheel omnidirectional setup —see
Figure 6— we now are interested in getting the velocities of
each wheel given the Cartesian velocities and the rotation
velocities.

Taking R as the distance of each wheel from the center,
angle «; relative to the local frame [x;, y;], e.g., wheel 1 is
located on the local axis x; which means, @; = 0, and we
can obtain the relation between the global velocity of the
platform (x, y, 6;) and the translational velocity v; of wheel i
via the inverse kinematic equation of each wheel hub i and the
relationship between velocities. Thus,

vi = —sin(6 + ;)X + cos(0 + a;)y + RO ()

Then considering r as the radius of each wheel and the
angular velocity ¢ of the wheels, then,

Figure 6. Kinematic diagram of the 3 wheel frame

1 1 —sin(6) cos(0) R| [x
¢r| = = |-sin(@ +az) cos(@+as) R||y (2)
é3| T |-sin(@+a3) cos(8+a3) R||6

Now, we are able to update the velocities whenever neces-
sary in the algorithm using (2).

2.2 Delta robot kinematics

Since we are using a Delta-framed robot it is necessary for our
implementation to have the inverse kinematics of this model
once the omni-wheel robot has achieved its final position.
Here, we are interested in getting the three actuated revolute
joint angles if the Cartesian position is given.

From Figure 7 we have (3),

Delta Robot Moving Platform

Delta Robot 3-D Kinematic Diagram

Figure 7. Kinematic diagram of Delta frame. Taken from [10]
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Analitically, the model is solvable if we use the three con-
straints equations applied to the vector loop-enclosure which
are obtained from the geometry of the robot, —see Figure 7—
see (4), (5), (6).

2L(y+a)cost +2zLsin0 +x>+y* + 22 +a*+L>+2ya—1> = 0

“4)

—L(\/g(x + D)+ y+ c)cosy + 2zLsinb; +x°+ y2

+22 4D+ L2+ 2xb+2yc-12=0  (5)

L(V3(x-b) - y — ¢)cosb3 + 2zLsinf3 + x> + y?
+22+ b2+ P+ L= 2xb+2yc—1>=0  (6)

We solve the inverse kinematics problem for the joint an-
gles 6 = {61, 65,63} if the Cartesian position of the moving
platform is given, Pp = {x, y, 7. Additionally, and referring
to the Delta Robot kinematic diagram —see Figure 7—, the
IPK (Inverse Position Kinematics) problem can be solved in-
dependently for each of the three RUU legs. Thus, the three
independent scalar inverse position kinematics equations are
in the form:

EiCOSQi + Fisiné’,- + Gi, I = 1, 2, 3 (7)

where E, F, G are variables which depend on the geom-
etry equations (4), (5), (6) (since the expressions for E, F,G
are extense and redundant, they are not shown in this doc-
ument but one could refer to [10] to fully understand these
expressions.

Thus, defining #; = tan% and using the Tangent Half-
Angle Substitution we have,

i ®)

Substituting the Tangent Half-Angle Substitution (8) ex-
pressions into the EFG equation (7) we get expressions for the
inverse kinematics (fully broken down in [10]) which satisfy
the geometry transformation. Then, inverting the original Tan-
gent Half-Angle Substitution definition, we have,

6; = 2tan_1 (l‘[) )

Two 6; solutions result from the + in the quadratic formula.
Both are correct since there are two valid solutions — knee left
and knee right. This yields two IPK branch solutions for each
leg of the Delta Robot, for a total of 8 possible valid solutions.
Generally the one solution with all knees kinked out instead of
in will be chosen due to physical monitoring and angle limits.

2.3 Lighthouse Positioning System (using Extended
Kalman Filter)

Finally, the last stage in the navigation modeling stage is the

positioning using the Extended Kalman Filter of the Light-

house system with the Vive beacons (Base Stations 2.0) and

the Crazyflie (Lighthouse Deck).

Reference frame in the Lighthouse System First, we define
the reference frame used in this setup,

* Base station reference frame, see Figure 8 (a). Where
the X-axis is pointing forward through the glass. The Y-
axis is pointing right, when the base station is seen from
the front, aand the Z-axis is pointing up (away from the
screw mount).

* Rotor reference frame —see Figure 8 (b)—, There is
one (LH2) rotor in a Base Station 2.0 (Beacon). Each
rotor is rotating around an axis of rotation, 7. We define
a coordinate system for the rotor where the Z-axis points
along 7 and the X-axis is the same as the X-axis of the
base station.

Next, for the Base Station 2.0, we need to consider the
built-in light rotor and its Rotation Angle —see Figure 9
(a)— and its Light Plane Tilt, see Figure 9 (b).

In the measurement model we want to get from a sensor
position s to rotation angle @. The first step is to calculate the
sensor position in the rotor reference frame —see Figure §
(b)—. The measurement is the rotation angle @ when the
sensor is hit by the light plane.

a ) Front —— b)

Figure 8. Reference frames used in the Lighthouse Deck. a) corre-
sponds to the Base station reference frame and b) corresponds to the
rotor reference frame. Taken from [1].
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Figure9. Components in the rotors of the Base Stations. a) Rotation
Angle components. b) Light Plane Tilt components. Taken from [1].
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Figure 10. Rotation angles in the rotor of the Base Station. Left:
Top view of the rotor. Right: Side view of the rotor. Taken from [1].

Prediction To calculate the predicted rotation angle «
—see Figure 10— we have to go from the sensor position
(s = (x,y,z) in the rotor reference frame) to rotation an-
gle, where the rotation angle is from the X-axis to the line
where the light plane intersects the XY-plane. The rotation
angle to the sensor «; is the sum of the predicted rotation
angle «, and the rotation angle from the intersection line to
the sensor a;, caused by the tilt of the light plane, ay = @), +a;.

The observation model for the EKF (Extended Kalman
Filter) estimates xy, ys, Zs components of the sensor position
in the global coordinate frame, to the measured observations
ap are:

Zgtantp

a, = arctan2* + arcsin
Xs s

(10)

where,

N (11

The measurement model is linearized by the Jacobian:

0 0 0

g, = ( e ‘””) (12)

Xs Vs 0Zs

Vs —XsZsqp Xs — Ysisq

gp — ( 2Y N 17, s ; P’qp) (13)

rs rS

with,
tant

£ (14)

dp =
\J7? - (zstantp)?

This Jacobian is first rotated to the coordinate system of
the base stations with the drum’s rotation matrix.

With the measurement model above the EKF system on
the Crazyflie is able to estimate the position for the wide
navigation (OmniWheel robot) and the fine navigation (Delta
Robot).
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Figure 11. Relative position for the transformation matrix of cam-
era/robot(Vive). This representation depicts in a rough way the spa-
cial distribution of the crazyflie sensor (Lighthouse Deck) and the
camera. Notice that the crazyflie is placed in the end effector of the
Delta robot and the camera in the omniwheel frame
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Figure 12. Relative position for the transformation matrix of
robot(Vive)/world. The constitutes Delta-omnidirectional robot

2.4 Reference Positioning

Since we are dealing with two relative positions to get one
global position for the robot, it is necessary to use transfor-
mation matrices from rotation followed by translation. Notice
that we are only using two dimensions since the height is fixed
in both cases.

The first relative position is the camera with respect of
the robot —see Figure 11— for which transformation matrix
will be,

_ cos(0) —sin(0) xpc
robot VAT = [5in(0)  cos(0) yre|  (15)
0 0 1

where x,. and y,. in (15) represent the difference of
relative position between the camera and the mobile frame of
the Delta robot (mounted crazyflie).

The second relative position is the robot with respect of
the world —see Figure 12— for which transformation matrix
will be,
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Figure 13. General architecture of the setup and how it operates.
We have a broad view from the top of the setup in the testing room
where the World reference frame is computed accordingly with the
Robot reference frame. In addition, the red X markers are used to
calibrate the two reference frames with each other.

cos(8) —sin(6) x,
WTrobot(Vive) = sin(@) COS(Q) Ywr (16)
0 0 1

where x,,, and y,,, in (16) represent the difference of rel-
ative position between the world and the mobile omniwheeled
robot (as before, from the mounted crazyflie).

3. System Design

We aim to design a system where the omni-wheel robot will
be used to arrive at the set location with adequate precision.
We also have a Delta robot mounted on the base which will
turn be used to position the flight sensor with a much higher-
precision. In the design of the control law, we have decided to
move the robot in such a way that the set point is close to the
center of the Delta robot’s dexterous work space. The robot’s
omni-wheel base is a velocity based control which is much
slower than the positon control of the Delta robot. Hence, the
2 levels of precision in the control of the positon of the flight
sensor, see Figure 13.

3.1 Calibration

Initially, when the robot is powered on, it is required to cali-
brate its location within the work area. We have decided to use
markers placed strategically in the area whose global positions
are known. A camera is to be placed on the robot that searches
for these markers and calibrates the robot’s position with the
help of the relative position it acquires from the Lighthouses.

The Vive Lighthouses are placed accordingly with Fig-
ure 15 and shown in Figure 16. After this, it is necessary
to communicate to the crazyflie the actual position of the
beacons (Lighthouses). To do that we will connect a USB
cable to each beacon at a time and set the position with the
installed software of crazyflie. It will upload the position of
the beacons to the crazyflie itself. This procedure is executed

only once if the beacons are fixed in that position.

Once it is done it is necessary to upload the python file for
the project to the crazyflie which will localize the robot in the
area with respect of the Lighthouses using the EKF estimation.

After having completed the calibration sequence the robot
is now ready to move to the set position. We can then provide
the set location by publishing the location to a ros topic which
the robot uses for set point input, see Figure 15.

3.2 Positioning

Once the relative positions are acquired, the transformation
reference frame algorithm is performed with respect of each
refrence frame obtaining the absolute position in the global
reference frame. Thus, the robot can apply the inverse dynam-
ics to each motor in the omnidirectional robot motor drivers
and the inverse dynamics followed by the Delta robot motor
drivers. The robot will perform the translation until the set
point is reached. This is driven by a PI controller in the omni-
directional robot. In the Delta robot a plain and simple PWM
velocity control is performed.

3.3 Hardware
Since we have designed and implemented a mobile robot we
have done the following tasks,

* Design and 3d-printing of the end effector of the Delta
robot.

* 3d-printing of the robot parts.

* Design and implementation of the power circuit for
the control board (Raspberry Pi), the camera, the Dy-
namixel Servos, and the electronic power coupling.

* Design and 3d-printing of the Base Stations mounts, see
Figure 16.

4. Implementation

A calibration and position system is used making use of the
Raspberry Pi camera mounted on the robot and OpenCV as
the software library for computer vision [7]. Using the Light-
house system and the camera positioning system the robot is
able to get a global position reference of the room.

Figure 14. End effector (orange structure) and the crazyflie board
with the Lighhouse deck
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Figure 15. Nodes of the stages in the control of the OmniWheel
robot and Delta robot

Figure 16. Beacons positioned in a rail with an 45 degrees angle
facing downwards to map the room area in 3D

The entire source code for the robot has been divided into
multiple ros nodes that function parallelly in order to move,
position, and control the robot. As seen in the figure with
the ros graph, there is one node on our system that supplies
the robot with the setpoint over the ros network. When the
robot receives this set point, it compares its current location
that it acquires from the pose-estimate node, from which it
computes the error and hence the correction required for it to
reach the setpoint. This correction is sent to the base-control
node, which computes the PWM that needs to supply to the
base motors. This set of PWM values reaches the control-
signal node that merges the PWM values for the base motor
and also the motors in the Delta robot. This entire control
signal is passed on to the robot-control node, which pushes
the control signal to the respective motors, hence completing
the chain of control.

5. Results

We have tested the positioning system with a number of tun-
able parameters. While performing the tests, we improved
the accuracy of our robot controller in accordance with the
whole setup (testing room and Omniwheel robot) by tuning
the PI controller parameters. We noticed an improvement
and/or deterioration in the values of the repeatibility test as the
experiments were held— see Table 2 —. After numerous tests

Table 1. Values for the Omnidirectional robot PI controller.

P (Proportional) I (Integral)
Axis
X 12 7
Y 12 7
0 1.5 -

X axis set point control
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Figure 17. Position correction when displaced along x axis from
its set point xsp = 0. The horizontal axis is in seconds [s] and the
vertical axis is in meters [m].

of hardware and software optimization, we set the PI values
— see Table 1 — for reducing the error difference once the
goal position was reached (Notice that the PI controller was
implemented for the omnidirectional robot only and not in the
Delta robot, which turned out it was not necessary thanks to
its robust repeatibility).

In order to test the the precision of the positioning (coarse
and fine) of the entire robot setup, we have tested the robot
in a repeatability routine. Accordingly, we have used a set
point of x,, =0, y,, = 0and 6,, = 0. Then, we manually have
relocated the robot randomly (lifting up the robot with the
hands and put the robot down in a unknown random position)
within the range of the beacons (Base Stations) light planes
and the sensing area of the Lighthouse Deck. Thus, we can
determine how good the coarse/fine positioning are when try-

Table 2. Values with the smallest error difference in x, y, 6 obtained
from a series of repeatability tests when the set point was x,, = 0,
yw = 0 and 6,, = 0. These values were taken after having fixed
issues in the hardware setup and after have tuned the PID and Kalman
estimator parameters to their best values when the error reached was
the minimum possible.

Error (Omni) Error (Delta)
Axis [mm] [mm]
Ax 3.649 2.141
Ay 4.817 1.682

Ag 2.035 1.942
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Figure 18. Position correction when displaced along y axis from
its set point ysp = 0. The horizontal axis is in seconds [s] and the
vertical axis is in meters [m].
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Figure 19. Rotation correction when rotated around z axis from its
set point (yaw angle) 6sp = 0. The horizontal axis is in seconds [s]
and the vertical axis is in degrees [o].

ing to return to the zero set position. Also, we can determine
hardware issues just by looking at the error values in each axis
and angle rotation, see Figures 17, 18, 19, 20.

6. Discussion

We have investigated and implemented the coarse navigation
and the fine positioning of this Omniwheel robot with two
low-cost precise-tracking systems in an attempt to reduce the

— data [\
0.4

0.2

Figure 20. Repeatability test along x axis. We have performed a
random pick and place of the robot expecting from the robot to return
to its zero position along the x-axis. The horizontal axis is in seconds
[s] and the vertical axis is in meters [m].

inherent error of such tasks. We have noticed how sensitive the
hardware is when it comes to apply models specially designed
for them. Since the models are idealized structures (algoithms
and mathematical models), the error will always be present in
the positioning/localization tasks.

The redundancy of the Lighthouse system, which in fact
is remarkable, has a range or error values which are im-
posible to estimate below the milimeters level. Nevertheless,
considering the area covered by the robot (3.5[m] x 3.5[m]
approximately), the positioning accuracy in [mm] is uncanny.

Thus, one can realize that the use of the Delta robot is
justified if one tries to obtain extra precision by positioning
the system as precisely as possible.

If one would try to reduce this range of millimeters to a
few microns, the work would then consist in applying more
precise systems such as computer vision for absolute posi-
tioning, laser tracking and/or mapping/radar sensors such as
Lidar. Likewise, given that this project used custom-made
parts with a certain range of error in manufacturing, the next
challenge would be to improve the manufacture of these parts
and achieve a model very similar to that obtained from math-
ematical models and simulations.

With this project we have been able to develop a clear
and brief vision of how the global location problem of a mo-
bile robot could be addressed for high precision positioning



applications. One of the most important points is the use of
specialized operating systems for robots such as ROS [8],
which allows the integration of almost any type of system,
algorithm, sensor, electronics, mathematical model and pro-
gramming languages in a single environment. This allows to
the designer to perform complicated tasks in a structured way.
In this project, for example, the use of ROS allowed adapt-
ing the positioning systems with the inverse kinematics of the
respective robots in a harmonious way.
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1 Project Purpose

The goal of this project is to model the forward and inverse velocity kinematics of a 3-OmniWheel
mobile robot and the inverse kinematics model for small motions of a Delta robot mounted in the
mobile robot frame. In addition, reach an accurate robot position (using the robots combined) from
the global position in room (by using the HTC Vive Lighthouse tracking system) with respect of its
local position (using a quadcopter flight controller).

2 Equipments and material

In this section we propose a list containing the materials needed for the project. We have appended
the approximate costs of each item on the list — based on the research we have been doing online.
2.1 Robotics

¢ Metal frame. (approx. 1000 SEK)

* Dynamixel MX-64T Servo motors x 3 (one per axle of the mobile frame). (approx. 2000
SEK/each)

* Dynamixel MX-64T Servo motors x 3 (one per arm of the Delta robot). (approx. 2000
SEK/each)

» Raspberry Pi 4 Model B - 4GB. (approx. 690 SEK)

* Crazyflie-Flow v2 deck (flight controller) for local positioning. (approx. 450 SEK)

* 12 - 18 VDC power supply for servos, flight controller and Raspberry. (approx. 800 SEK)
* Omni wheels x 3. (approx. 110 SEK/each)

2.2 Global positioning system
e HTC Vive Cosmos. (approx. 8990 SEK)
e HTC VIVE Base Station 1.0 (Lighthouses). (approx. 1037.57 SEK)

3 Modelling and System Design

For this project, we have considered several stages described in a flowchart (Figure 1). Each
component can be developed and implemented independently from one another in early stages. Once
the stages have been sufficiently completed, they will be integrated to function as a single positioning
unit for the mobile robot.

The hardware setup will include:

Flight sensor

(z,3,0)

Reference

Position Main Computer

(2,y) Master Node

Raspberry Pi

91,92, Ly Gz 03

Omni-wheel Delta Robot

Figure 1: Software Architecture.



The Delta/Omni-wheeled robot.

¢ Two beacons (HTC lighthouses) mounted in the testing room that will be used for the precise
localization of the robot.

* An Raspberry Pi to control the robot and process the localization data..
* A PC to run The HTC Vive software and set point the starting position.

For the implementation we propose to use a software structure seen in Figure 1. We have decided to
use a ROS framework to control the Robot and to communicate with an external PC which will be
used to set the setpoint for the robot and also to collect data for analysis. The Robot will be equipped
with a flight sensor which will be obtaining the localization data using the help of the lighthouse
beacons.

4 Division of labour

We have decided to split our project into three parts: Omniwheel modelling of vectors (for-
ward/inverse velocity kinematics), positioning in the room (globally), Delta robot inverse kinematics
for small motion/fine tuning positioning (Optional).

4.1 Omniwheel modelling of vectors

This is the first stage of our project where we will develop a specific kinematic model for the three-
omni-wheeled robot according to its dimensions. After we have obtained the kinematic model of
the robot, we will proceed to implement it in the ROS environment installed in the robot-mounted
Raspberry Pi taking into account the local (flight controller) positioning system.

Both of us will be in charge of this section. Since this task is complex and demanding (and also
the main one) we have decided to implement it both. We will take turns developing the mathematical
model of the robot and implementing the code in ROS.

4.2 Positioning in room (global positioning)

Once the model is functional for the local positioning of the robot on the horizontal / vertical axis plus
its orientation, we will use the data obtained from the robot to compare it with the global positioning
system (HTC Lighthouses) and accurately move the robot to a previously given location.

Leonardo Carrera will be in charge of the HTC Lighthouse positioning system in the main
computer and Vinay Patil will be in charge of the calculations between the beacon position data
(HTC Lighthouses) and the flight controller sensor.

4.3 Delta robot inverse kinematics for small motion/fine tuning positioning
(Optional)

After having reached an approximate position from the beacons of the HTC Lighthouse and the flight
controller, the next task is to implement fine positioning with small movements generated by a Delta
robot mounted on the frame of the mobile robot. Thus, a reflector mounted on the tool center point
of the delta robot will have the ability to move finely and reach the specified position with millimeter
precision.

As before, the task is moderately complex, so we will both design the mathematical positioning
model and the corresponding programming in ROS.

5 Time Plan
5.1 Subtasks

» Configure a ROS environment with all the necessary APIs and libraries needed and test with
all the robot components. Estimated deadline: 31/3
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Figure 2: The Gantt chart describing the work flow of our project.

3d-print custom parts for holding motors and sensors. Estimated deadline: 7/4
Assemble the omni-wheel and Delta robot. Estimated deadline: 10/4

Set up the beacons of the HTC Lighthouse system in stationary positions and set up the area
for the robot. Estimated deadline: 14/4

Implement the communication between Raspberry and PC (ROS messages, ROS Wrapper,
etc). Estimated deadline: 21/4

Find mathematical models for both, the omni-wheel kinematic model and the fine tuning
delta-robot kinematic model. Estimated deadline: 29/4

Model the algorithm for getting the local position with respect of the global position. Estimated
deadline: 29/4

Create a software package for the Dynamixel servos in ROS. Estimated deadline: 6/5
Implement the mathematical models in ROS. Estimated deadline: 14/5
Tune the models with the actual robot and correct positioning faults (hardware and software).

Estimated deadline: 15/5

Important dates

Mar 29 - Hand in project plan.

Apr 22 - Feedback seminar 1 on the modeling and design.

May 5 - Report should be pushed to git to allow peer review by other groups.
May 11 - Peer review done

May 12 - Feedback seminar 2 on the design and implementation.

May 20 - Project done and demonstrated and final report handed in

May 27 - Demo film upload and peer review of final report done

June 3 - Final presentation and demonstration and revised final report handed in

Gantt Chart

ave formalized the time plan as a Gantt chart. The major tasks can be seen plotted in Figure 2.
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