Tracking of a high precision robot

Abdullah Shahin!

Isvel5ash@student. lu.se 2vi@507pa—s@student.lu.se

Vinay Venkanagoud Patil®

Abstract: The project is centered around the evaluation of sensor fusion with the help of a
filtering algorithm to filter out noise from the process and the measurement of a high precision
robot that is being built for MAX IV, the filtered position estimate is used to track the robot in the
environment. The filter in focus is the extended Kalman filter (EKF). This is a continuation of the
work done by the author, Abdullah Shahin and Vinay Venkanagoud Patil, the collaboration will
use the dual robot (omnidirectional/delta) that has been built by Vinay and implement the filters
that Abdullah worked on in the localization node, the main focus is to find the measurement model
of the IMU and Encoders. Further, the project will work on the inverse kinematics of the robot, so
that the control signal units correspond to the measurement units, the final result has been tested at
MAX 1V, the robot is equipped with 3 omni wheels and 3 actuators that has a delta configuration.
The results of this project was a maximum radius error of 3.5mm, this is more than a 10 fold
improvement in the precision of the robot as our most accurate sensor has a 4cm resolution.

Introduction

In this project, a fine-tracking mobile robot for high-precision
positioning and localization is implemented and used at the
beam-line laboratory MAX IV in Lund, Sweden. The require-
ment comprises of the positioning and marking of relatively
exact points on concrete floor where the beam line equip-
ment and machinery will be positioned. Currently, there are
16 funded beam-line experiments and 6 are being installed.
All of the beam-line equipment has been placed manually by
construction workers. This machinery needs to be placed very
accurately since the radiated beam itself is highly sensitive to
deviations along its path and will have a direct impact on the
resolution this beam has. Therefore, a poor placement will in-
terfere with the experiments and measurements. A computer
based blue lining system is being used to map the construction
area in order to help the engineers to place the aforementioned
equipment. Thus, the task is repetitive and physically demand-
ing for the workers due to the goal precision of +60 microns
they need to reach for each mark using the current equip-
ment. Consider that there are a couple of hundred points to
be marked. Another drawback is the time the worker spends
to reach each point because of the natural inaccuracies of the
human hand. Thus, it takes several tries to reach the position.
It is so a highly accurate robotic system with advanced control
techniques is required to accomplish this task more efficiently
and in less time.

Previously, the authors (Patil V., Carrera L.) [2] have im-
plemented a dual robotic system for accurate positioning con-
sisting of a Delta-configuration robot over an omnidirectional
mobile robot. This system features the coarse navigation (om-
nidirectional) and the fine positioning (Delta) in two consec-
utive stages, once the omnidirectional robot has reached a
reasonable +2 centimeters in radius from its target the Delta
robot goes into action by fine positioning the end effector to
the target with an estimate of +300 microns of error from

the actual target. Although the robot is capable of a consid-
erable high accuracy on its positioning it does not perform at
its full potential due to the control system employed. Alterna-
tively to this work, the author (Shahin A.) [4] has developed
the control software intended to solve the blue lining task us-
ing advance control techniques with outstanding localization
and navigation features. The objective was to investigate, via
simulation, an EKF (Extended Kalman Filter), an UKF (Un-
scented Kalman Filter) and a PF (Particle Filter) over a car-like
steering vehicle and its corresponding state-space model. This
work concluded that the filters have potential to navigate the
MAXTV robot with accuracy, the simulation had both process
and measurement noise applied to it. Therefore, and in order
to take advantage of the full potential of the authors work,
the authors have studied the adaptation of these filters on the
omniwheel/delta dual robot and investigated with potential
implementation in this dual robot for later testing on-site at
MAX 1V, as this robot will run the algorithm on a raspberry
pi, the PF is computationally demanding, the UKF a more ad-
vanced version of the EKF and thus is more demanding on the
group to implement. The objective is therefore to reach a fine
positioning suitable enough to perform the blue lining process
with great accuracy and cheap but reliable components with
an EKF algorithm. The book [5] is used extensively during
the previous project, that was investigated by (Shahin.A) and
has been continued, with a real world robot with more sensors
and actuators than the simulated robot, the chapters studied
will mainly be chapter 1,2,3,7 and 8.

2. Modeling

The present project has a list of key components in which
the functioning is based on. It is described from the hardware
components to the subsystems they form. Also, the essential
math background is described for each subsystem so the whole
model can achieve the localization and navigation process.

43

Shahin A, Venkanagoud Patil V

Figure 1. Dual robot (omnidirectional/delta) used in this project

\e

Figure 2. Crazyflie sensor (Lighthouse Deck)

IMU sensor

Since the dual robot uses relative position and rotation
measurements, the considered sensor for this setup is the
6-DOF (Degrees Of Freedom) IMU (Inertial Measurement
Unit) which is mounted on the center of the omnidirectional
robot frame.
The crazyflie drone has been retained to compute the iner-
tial measurements and use the sole measurements from the
on-board accelerometer and gyroscope. This sensory data has
been logged using the crazy-radio(RF interface to control and
log data from the crazyflie drone). The sensory data logged
from the crazyflie drone will consist of X and Y position using
the lighthouse deck, acceleration along X and Y using the
accelerometer. However, more accurate and reliable IMU’s
could be mounted on the robot in the future

Wheel Encoders Along with the IMU sensor, wheel en-
coders are used to extract wheel velocities which are in turn
transformed to the robot body velocities using the forward
kinematics of the robot. The encoder data is polled from the
dynamixel motor [1] every instance a control signal is sent in.
Additionally, the encoders on the motor provide us a resolution
of 4096 ticks per revolution which corresponds to 0.00153ra-
dians.

Leica Absolute Tracker The Leica Absolute Tracker is a
laser based device which uses a laser beam directly pointed
to a reflector to estimate with metrology-grade accuracy the
3D-position, see Figure 3. In the dual robot, the Leica reflector
has been installed in a position near the IMU sensor in order
to obtain the position of the robot with respect to the Leica
tracker. This enables the robot to know its initial position

44

Figure 3. Leica Absolute Tracker

in the space and compute the trajectory to the target. The
important role of the Leica Absolute tracker in this project
is to provide us with absolute position in space during the
initial calibration and also help measure the performance of
the localization on arrival to the target.

Crazyflie Lighthouse deck

The lighthouse deck is one of many decks developed by
Bitcraze. This deck is custom designed to acquire position
data using the htc vive lighthouse base stations. The base sta-
tions used produce a light signal that sweeps in the horizontal
and the vertical plane with a unique frequency which is quite
similar to a conventional lighthouse we see at the sea shores.
The flydeck is equipped with 4 mirrors that are photo sensitive
that sense the lighthouse signals to compute its position from
the lighthouse.

Omnidirectional Robot

The considered model is the omnidirectional setup shown
in Figure 4.

An omnidirectional platform is used since it can perform
translations in any direction without the need to reorient.
Moreover, due to its symmetric construction, the omnidirec-
tional platform can also rotate about its Z axis seamlessly.
These features are achieved by using the resulting veloci-
ties of the omnidirectional wheels that are controlled dictated
by its kinematics. The command to the robot is in form of
u; = (Vx,Vy,w;) which is the body velocities in X and Y,
and the angular velocity along Z. Thus, the robot kinematics
equation will correlate the command vector variables with the
actual controllable variables in the omnidirectional platform
i.e. the wheel velocity of each wheel (w;, wy, w3). This rela-
tion is derived from the inverse kinematic transformation of
the robot.

Figure 4. Model of the omnidirectional robot

2.1 State Space Model
First, the state transition model for this setup is described in
Eq. 1

Xp =g, Xe-1) + vy (D

Where, x; is the state vector, the control vector u;, v, is a
Gaussian process noise in the form of a Gaussian vector.

The state vector x; is given by (Eq. 2),

Xy = (xworld’ Yworld» ll’z)‘r (2)

x (ur) * cos(yz) = (uz) * sin(yz)
v | = |) * sin@o) + () xcosw)| 3
U2 us
Where x and y are the positions in the world coordinates,
uy(linear velocity along X), us(linear velocity along Y) and
us(angluar velocity along Z) are the control velocities, i, and
w, are the angular position and angular velocity respectively.
The control vector is given by (Eq. 4),

Ur = (eref, Vyref’ wzref)T “4)

Where u; is the control signal containing the body veloc-
ities in the x,y and ¢ direction respectively. This is used to
predict the estimated state in EKF algorithm.

Measurement Model

From Eq. 5 and the state vector in Eq. 2 the measurement
model is then given by the vector,
And the mobile robot measurements,

Ve = h(x;) +e;)

Where e, is a Gaussian measurement noise in Eq. 1 and
Eq. 5 accordingly.

The y; is the measurement vector containing the measure-
ments form the IMU sensor, Light house position data and

Tracking of a high precision robot

the encoder data, the IMU sensor outputs data from the ac-
celeromotor which is the measure of ay, a, this data has been
fused with the Light house data which outputs the position for
Xworid> Yworta and Ypoqy and the encoder data V.,V and w,
to correct the estimated state from the control signal. This has
been done in the final step of the EKF algorithm called the
correction step.

el =1y, (©6)

3. Extended Kalman filter

As it was mentioned before, an EKF (Extended Kalman Filter)
has been employed to preform the localization of this robot.
Such algorithm relies on two steps sequence: Prediction step
and the Correction step. The updates for the state and the
covariances are performed in Eq. 1 and 7 respectively,

Pri1yp = FPt|tFT +0 (7

Where £ is intended to be the estimate of x at time ¢
given the control signal up to time k. Now, when the state
space model is linearized to F the covariance update is possi-
ble. Further, the Kalman filter equations for the measurement
update is seen in 8,

K; = Pt\t—leT(HtPtlt—lH;r + Qe)_1 (®)
Xepe = X0 +Ki(ys — h()etlt—l)) &)
Pt\t = (1 - Kth)Ptlt—l (10)

3.1 Predict for EKF

The prediction for the EKF is preformed by equation 1 and
7.However, the prediction in this project differs from the pre-
vious in the following way, we have a more states in our state
space model, where our control signal is updating the posi-
tion states and the orientation states. The acceleration states
are updated using the accelerometer readings. Thus, there are
in total 5 sates as can be seen in equation 2. To predict the
covariance matrix it is then required to linearizer the state
space model with a Taylor series expansion, this creates a 5x5
matrix which is the Jacobian matrix, the Jacobian matrix has
been used to predict the covariance of the system.

3.2 Correct for EKF

After the prediction is complete, the correction of the predicted
state is facilitated from the measurements on the robot, the
measurements are two IMU readings i.e. the accelerations
along X axis and the Y axis, the position data from the HTC
vive lighthouse deck and three encoder readings, by taking the
difference in the innovation seen in equation 9, the Kalman
gain calculated will help to weigh the different measurements
form the sensors and the final estimated state is reached, this is

45

Shahin A, Venkanagoud Patil V

fcontrol_signals frobot_velocity
direction_to_wheel_speeds. robot_control

Iocalization_fiter

Figure 5. ROS graph

where the “sensor fusion’ is completed. The corrected estimate
is then sent to the controller as input. for the next iteration the
correction of the covariance matrix is preformed and is fed
back to the predicted step along with the new control signal
and the corrected estimated state, the cycle continues until the
final desired position is achieved.

4. Implementation

4.1 ROS

The software for the robot to control and estimate its position
is done using ROS. ROS that stands for Robot Operating sys-
tem is an open-source robotics middle-ware. Although it is not
an actual operating system but a collection of software frame-
works for robot software development. It provides services
designed for a heterogeneous computer cluster such as hard-
ware abstraction, low-level device control, implementation of
commonly used functionality, message-passing between pro-
cesses, and package management. The operating processes in
ROS can be represented using a ROS graph where the opera-
tions happen in the nodes that may receive, send or multiplex
sensor data and other messages such as control signals and set
points. The other features that ROS provides is suite of de-
bugging tools that enable us to plot data from the ROS topics
in real time and check for inconsistencies. In this project ROS
is used as framework for multiple python nodes that perform
different tasks within the robot application. The ROS graph
in the following figure 5 is the ROS graph that shows all the
nodes and how they communicate with each other and the
hardware using the respective ROS topics.[3]

4.2 Message passing

Since the body velocity obtained by the wheel velocities is one
of the sensory data used in the EKF, we need to extract wheel
speeds from the motors at every iteration. The ROS-node we
initially used didn’t accommodate for timing and this led to the
robot loosing its control over the motors every time we read
the sensor data. This was a result of the bus used to read and
write to the motor being a shared variable between the reading
and the writing functions. To fix this conflict, we introduced
a ROS service which whenever invoked would obtain a lock
over the bus to read the sensor data and release it whenever it is
not using it thus removing the conflict between the 2 processes
trying to access the bus.

4.3 Control signal

From the above section we can see that the control node in
the ROS system, subscribes to the /pose and the /setpoint
topics. It computes the errors along X, Y and . It then runs the
error through a PI controller and computes the corresponding

46

correction body velocities that are fed to the robot as control
signals in the form (Vy,V,,w;). This body velocity is then
converted to wheel velocities and then to motor PWMs in
the direction_to_wheel_speeds, and the control_signals nodes
respectively.

4.4 Kinematics

As we are using a 3-wheel omnidirectional setup, we need an
inverse kinematic model to transform the linear and angular
velocities of the body to wheel speeds. In our case, d is the
distance of each wheel from the centre of the robot, r is the
radius of the wheel and in a general case, angle ¢; is the angle
between the axes of the wheels. The angle 6 is the angle of
the first wheel from the X axis of the robot body frame. In our
robot, the values of 6, a1, @ and a3 are 30 deg,0 deg, 120 deg,
and 240 deg respectively. The corresponding transformation
can be represented using the following matrix.

—sin(0) cos(0) d
Rixk =|-sin(0+ay) cos(0+az) d (11)
—sin(0 +a3) cos(0+az) d
Vl Vx
Voa|=Rix | Vy (12)
V3 Wy

This matrix was used in the direction_to_wheel_speeds
node to convert the robot velocity from the control node to
wheel velocities that is further used to move the robot in the
desired way.

Additionally, a rotation matrix (Eq. 13) is applied to the
motion body frame to fully describe the velocities V, V, and
angular velocity w, from the wheel velocities V;, V, and V3
(Eq. 14). Due to the symmetric nature of the robot, the forward
kinematics can be computed by directly inverting the Inverse
Kinematic transformation from (Eq. 11).

Rrk = Ry (13)
Ve v
Vy|=Rrk -|Va (14)
Wy V3

This matrix was used to compute the body velocities from
the wheel velocities in the robot_control node which is further
used in the localization_filter.

4.5 Calibration of encoder measurements

The measurements from the encoders had to be calibrated for
the controller, as the EKF algorithm is running at 10000 Hz
the encoder measurements had to be scaled to compensate
for the frequent update of the EKF. Thus, at first the encoder
values where too small in the algorithm, the controller would
run the control commands more frequently than necessary, the
encoder measurement where multiplied by a thousand and a
destination of 10cm was given to the robot, the robot would
reach around 3.1cm which was then compensated for by divid-
ing the 1000 by 3.19 to reach the desired scaling factor which
would reach the 10cm mark with a +1mm error.

4.6 Tilt Compensation

Due to the unevenness of the ground, the robot would have
a tilt error form the IMU reading, that would result in the
robot control to incorrectly compensate for this tilt. This is
implemented to remove any effect of the acceleration due to
gravity appearing on the other axes namely x and y. In an
ideal scenario, when the robot is stationary on a completely
flat surface, the acceleration across z should be -g and 0 across
x and y axes. In order to achieve tilt compensation, we acquire
the accelerometer data along x,y and z. We then compute the
orientations of the IMU in the X-Z plane and the Y-Z plane.
Upon obtaining these angles, we know that the accelerometer
orientations in the space. We then project the raw values onto
the corrected axes. This is well described in the following
equation 15-18.

ox = tan_l(acc;“‘”/accgaw) (15)
¢y = tan™! (accy™ [accy;™) (16)
acciompensmed =acc’™™ - cos(¢y) 17
acc;ompe"mted = acc\™ - cos(¢y) (18)

4.7 Path planning

An algorithm was implemented to automate the motion of the
robot in a continuous loop of points chosen. This algorithm
keeps track of the error i.e. the euclidean distance between
the current position and the destination. When the error is
smaller than the resolution of the robot, the next destination is
automatically selected and the robot starts moving to the next
position. The path planned is a square with the sides of length
10 cm.

4.8 Extended Kalman filter
The pseudo algorithm seen in algorithm 1 represents the EKF
algorithm.

Algorithm 1: Extended Kalman Filter Algorithm

while currentSimulationTime < simulationTime do
Calculate the state estimate with the control

commands from the previous time step;
Calculate the error covariance with the Jacobian
of the model;
Calculate the measurement residual;
Calculate the Kalman gain;
Correct the state estimate with the Kalman gain;
Correct the error covariance;

end

As in the previous project the group relied on the help of
[5, pp. 203-220]. for the completion of the EKF algorithm,
as well as the experience the group members gained from the
previous projects.

Tracking of a high precision robot

Predict algorithm Equation 21 shows the Jacobian matrix
of the state space, the Jacobian is required to predict the co-
variance matrix.

a=—dt * ((u1) * sin(y;) + (u2) * cos(yz)) (19)

b =dt =+ ((ur) = cos(yz) — (uz) * sin(y;)) (20

1 0 a
F=|0 15 @1
001

Correct algorithm As our observation model needs to be
weighed for the correction step its Jacobian is shown in equa-
tion 22, as previously mentioned the output of the update step
is again fed into the Predict State and the cycle goes on until
the final position is estimated with in a satisfactory frame.

1 0 0
0 1 0
0 0 1
dt 0 0
Hr = 0 dt 0 (22)
0 0 dt
0.5 = (dt = df) 0 0
0 0.5« (dt=dr) O
5. Results

The EKF algorithm with sensor fusion from the three encoders
is finalized and have the same units as the control signal values,
the IMU units are adjusted to the control signals units as well
as the data from the HTC VIVE light house. As well as the
re-tuning of the PI controller to accommodate the new control
signal units. The ROS network and the inverse kinematics
have been adjusted to the project, debugged and are running
as expected. The MSE error for the localization was computed
and the values stayed between 6.53 * 1073 to 7.4 « 1078 along
X and 5.23 % 1078 t0 5.59 * 1078 along Y when run for 15
minutes in a square trajectory.

5.1 Repeatability and Reliability

From the path planning node the robot had an automated
loop that moved in a square with sides of length 10cm, at
every corner of the square a point is made, this test is done to
visually see the error distribution as the robot moves along the
square in an infinite loop, the position estimate of the EKF as
well as the measured light house measurements are plot and
can be seen in figure 6 where the units for the x and y axis
are in meters, the EKF position estimate is in red and the light
house position measurement is in blue. Further, the light house
measurement was blocked to test the effect of the light house
measurement, the results of that test can be seen in figure 7, the
light house measurement is the dominant measurement in the
sensor fusion done by the EKF, the light house was blocked
in the right top corner of the square the robot then moved
around 17cm in the x direction 7.4cm in the y direction, the
EKF flowed the Light house. In figure 8 the markings on the
floor have a error radius distribution of maximum of 3.5mm

47

Shahin A, Venkanagoud Patil V

plot

wlocalzation fromekP - # localiztion from lh

0124

0084

=l S

e ——

5006

002+

Figure 6. EKF estimate VS Light house measurement

this is measured after the robot has moved clockwise and the
over shoots are mostly seen on the y axis, the robot is then
moved anti clock wise and a different corner have the largest
error radius to be 3mm as seen in figure 9. In figure 10 and
11 where the robot reaches the 10cm destination with an error
radius of around 2.5mm for both the x axis and the y axis
respectively.

6. Discussion

6.1 Results

The testing on the 8th of December at MAX 1V, resulted in ac-
knowledging that more work needed to be done on the network
for the message passing to the motors. It was also observed that
the environment was dusty where the robot would be work-
ing, thus error would arise from the encoder measurements.
Further the leica laser could not be relied on for measurement
values as jitters where present in the leica laser measurements,
the jitters are due to the fact that the leica laser is not capa-
ble to update the measurements of a moving target as well
as it does for a stationary one, thus different covariances was
tuned in the EKF for when the robot is moving and when it is
stationary. As the robot should trust the IMU measurements
more when the robot is moving and trust the encoders as well
as the leica laser more when stationary, the covariance matrix
must be tuned accordingly. As every sensor has disadvantages
and advantages when in operation the sensor fusion is not only
beneficial for the operation of the system but necessary. The
testing of this EKF design could not be done in due time,

48

plot

ulocalzation from ek localzation from

Figure 7. EKF estimate VS Light house measurement blocked

Figure 8. 3.5mm radius error distribution when running the robot
clockwise

Figure 9. 3mm radius error distribution when running the robot
clockwise and anti clock wise

Figure 10. horizontal total distance and error when running clock
wise and anti clockwise

Tracking of a high precision robot

Figure 11. Vertical total distance and error when running clock
wise and anti clockwise

as the measurement engineer Alina did not have a possibility
to meet with us during the holidays. Thus, the team replaced
the Leica measurements with the Light House measurement,
the light house measurements are less accurate with 4cm but
is more reliable when it comes to moving target, as seen in
5.1 the resolution of the position estimate relative to the reso-
lution of the Light house measurement resulted in a 10 folds
improvement form 4cm to around 3mm. The final set up of the
algorithm and results were presented on the 14th of January
to the faculty members and students at LTH.

6.2 Project dynamics

The dynamics of the group has been under pressure, as one
of our group members decided to drop the course. Further,
the testing of the robot was scheduled to be on the 8th of
December, thus the group was required to be 4 weeks ahead of
schedule, this resulted in long night (the longest night lasted
until 5 in the morning) in the lab to get everything debugged
and working. Results of the work were investigated on the 8th
and reported soon after. Finally, the group missed one week of
supervisor help due to the robot lab week, which resulted in
the investigation of quaternion which was not necessary to the
project, the python package built by Anders Blomdell that is
responsible for controlling Dynamixel motors did not account
for negative values in the register. Thus, some hours were
spent to understand and process the negative values from the
Dynamixel motors. Due to the circumstances and the nature of
a project was proposed by the authors. Resulted in the authors
having to be more self reliant, compared to other projects.

49

Shahin A, Venkanagoud Patil V

6.3 Project outcome

The project was a challenging endeavour for the time assigned
to it, many over time hours were invested into the project for
the final results, the majority of the time was investigating and
debugging the code implementation for better results. As the
project has not been done before many unknown unknowns
where realised as the project developed, this project contains
information form the majority of the courses taken previously
by the authors and some courses that haven’t been taken at
all. The investigation in this project will further develop in the
authors thesis work, that will be worked on in the spring.

References

[1] DynamixelSDK. https://github.com/ROBOTIS-GIT/
DynamixelSDK. Accessed: 2021-12-1.

[2] V. V. Patil and L. D. Carrera. OmniWheel Robot. The
Faculty of Engineering at Lund University, 2021-06-01.

[3] ROS. https://ros.org. Accessed: 2021-12-1.

[4] A. Shahin. Tracking of a high precision robot. The Fac-
ulty of Engineering at Lund University, 2021-06-01.

[51 S. Thrun. Probabilistic robotics. Vol. 45. 3. ACM New
York, NY, USA, 2002.

50

