
Tracking of a high precision robot

Abdullah Shahin1 Vinay Venkanagoud Patil2

1sve15ash@student.lu.se 2vi0507pa-s@student.lu.se

Abstract: The project is centered around the evaluation of sensor fusion with the help of a

filtering algorithm to filter out noise from the process and the measurement of a high precision

robot that is being built for MAX IV, the filtered position estimate is used to track the robot in the

environment. The filter in focus is the extended Kalman filter (EKF). This is a continuation of the

work done by the author, Abdullah Shahin and Vinay Venkanagoud Patil, the collaboration will

use the dual robot (omnidirectional/delta) that has been built by Vinay and implement the filters

that Abdullah worked on in the localization node, the main focus is to find the measurement model

of the IMU and Encoders. Further, the project will work on the inverse kinematics of the robot, so

that the control signal units correspond to the measurement units, the final result has been tested at

MAX IV, the robot is equipped with 3 omni wheels and 3 actuators that has a delta configuration.

The results of this project was a maximum radius error of 3.5mm, this is more than a 10 fold

improvement in the precision of the robot as our most accurate sensor has a 4cm resolution.

1. Introduction

In this project, a fine-tracking mobile robot for high-precision

positioning and localization is implemented and used at the

beam-line laboratory MAX IV in Lund, Sweden. The require-

ment comprises of the positioning and marking of relatively

exact points on concrete floor where the beam line equip-

ment and machinery will be positioned. Currently, there are

16 funded beam-line experiments and 6 are being installed.

All of the beam-line equipment has been placed manually by

construction workers. This machinery needs to be placed very

accurately since the radiated beam itself is highly sensitive to

deviations along its path and will have a direct impact on the

resolution this beam has. Therefore, a poor placement will in-

terfere with the experiments and measurements. A computer

based blue lining system is being used to map the construction

area in order to help the engineers to place the aforementioned

equipment. Thus, the task is repetitive and physically demand-

ing for the workers due to the goal precision of ±60 microns

they need to reach for each mark using the current equip-

ment. Consider that there are a couple of hundred points to

be marked. Another drawback is the time the worker spends

to reach each point because of the natural inaccuracies of the

human hand. Thus, it takes several tries to reach the position.

It is so a highly accurate robotic system with advanced control

techniques is required to accomplish this task more efficiently

and in less time.

Previously, the authors (Patil V., Carrera L.) [2] have im-

plemented a dual robotic system for accurate positioning con-

sisting of a Delta-configuration robot over an omnidirectional

mobile robot. This system features the coarse navigation (om-

nidirectional) and the fine positioning (Delta) in two consec-

utive stages, once the omnidirectional robot has reached a

reasonable ±2 centimeters in radius from its target the Delta

robot goes into action by fine positioning the end effector to

the target with an estimate of ±300 microns of error from

the actual target. Although the robot is capable of a consid-

erable high accuracy on its positioning it does not perform at

its full potential due to the control system employed. Alterna-

tively to this work, the author (Shahin A.) [4] has developed

the control software intended to solve the blue lining task us-

ing advance control techniques with outstanding localization

and navigation features. The objective was to investigate, via

simulation, an EKF (Extended Kalman Filter), an UKF (Un-

scented Kalman Filter) and a PF (Particle Filter) over a car-like

steering vehicle and its corresponding state-space model. This

work concluded that the filters have potential to navigate the

MAX IV robot with accuracy, the simulation had both process

and measurement noise applied to it. Therefore, and in order

to take advantage of the full potential of the authors work,

the authors have studied the adaptation of these filters on the

omniwheel/delta dual robot and investigated with potential

implementation in this dual robot for later testing on-site at

MAX IV, as this robot will run the algorithm on a raspberry

pi, the PF is computationally demanding, the UKF a more ad-

vanced version of the EKF and thus is more demanding on the

group to implement. The objective is therefore to reach a fine

positioning suitable enough to perform the blue lining process

with great accuracy and cheap but reliable components with

an EKF algorithm. The book [5] is used extensively during

the previous project, that was investigated by (Shahin.A) and

has been continued, with a real world robot with more sensors

and actuators than the simulated robot, the chapters studied

will mainly be chapter 1,2,3,7 and 8.

2. Modeling

The present project has a list of key components in which

the functioning is based on. It is described from the hardware

components to the subsystems they form. Also, the essential

math background is described for each subsystem so the whole

model can achieve the localization and navigation process.

43

Figure 1. Dual robot (omnidirectional/delta) used in this project

Figure 2. Crazyflie sensor (Lighthouse Deck)

IMU sensor

Since the dual robot uses relative position and rotation

measurements, the considered sensor for this setup is the

6-DOF (Degrees Of Freedom) IMU (Inertial Measurement

Unit) which is mounted on the center of the omnidirectional

robot frame.

The crazyflie drone has been retained to compute the iner-

tial measurements and use the sole measurements from the

on-board accelerometer and gyroscope. This sensory data has

been logged using the crazy-radio(RF interface to control and

log data from the crazyflie drone). The sensory data logged

from the crazyflie drone will consist of X and Y position using

the lighthouse deck, acceleration along X and Y using the

accelerometer. However, more accurate and reliable IMU’s

could be mounted on the robot in the future

Wheel Encoders Along with the IMU sensor, wheel en-

coders are used to extract wheel velocities which are in turn

transformed to the robot body velocities using the forward

kinematics of the robot. The encoder data is polled from the

dynamixel motor [1] every instance a control signal is sent in.

Additionally, the encoders on the motor provide us a resolution

of 4096 ticks per revolution which corresponds to 0.00153ra-

dians.

Leica Absolute Tracker The Leica Absolute Tracker is a

laser based device which uses a laser beam directly pointed

to a reflector to estimate with metrology-grade accuracy the

3D-position, see Figure 3. In the dual robot, the Leica reflector

has been installed in a position near the IMU sensor in order

to obtain the position of the robot with respect to the Leica

tracker. This enables the robot to know its initial position

Figure 3. Leica Absolute Tracker

in the space and compute the trajectory to the target. The

important role of the Leica Absolute tracker in this project

is to provide us with absolute position in space during the

initial calibration and also help measure the performance of

the localization on arrival to the target.

Crazyflie Lighthouse deck

The lighthouse deck is one of many decks developed by

Bitcraze. This deck is custom designed to acquire position

data using the htc vive lighthouse base stations. The base sta-

tions used produce a light signal that sweeps in the horizontal

and the vertical plane with a unique frequency which is quite

similar to a conventional lighthouse we see at the sea shores.

The flydeck is equipped with 4 mirrors that are photo sensitive

that sense the lighthouse signals to compute its position from

the lighthouse.

Omnidirectional Robot

The considered model is the omnidirectional setup shown

in Figure 4.

An omnidirectional platform is used since it can perform

translations in any direction without the need to reorient.

Moreover, due to its symmetric construction, the omnidirec-

tional platform can also rotate about its Z axis seamlessly.

These features are achieved by using the resulting veloci-

ties of the omnidirectional wheels that are controlled dictated

by its kinematics. The command to the robot is in form of

DC = (+G , +H , lI) which is the body velocities in X and Y,

and the angular velocity along Z. Thus, the robot kinematics

equation will correlate the command vector variables with the

actual controllable variables in the omnidirectional platform

i.e. the wheel velocity of each wheel (l1, l2, l3). This rela-

tion is derived from the inverse kinematic transformation of

the robot.

Shahin A, Venkanagoud Patil V

44

Figure 4. Model of the omnidirectional robot

2.1 State Space Model

First, the state transition model for this setup is described in

Eq. 1

GC = 6(DC , GC−1) + EC (1)

Where, GC is the state vector, the control vector DC , EC is a

Gaussian process noise in the form of a Gaussian vector.

The state vector GC is given by (Eq. 2),

GC = (GF>A;3 , HF>A;3 , kI)
⊤ (2)


¤G

¤H
¤kI


=


(D1) ∗ 2>B(kI) − (D2) ∗ B8=(kI)

(D1) ∗ B8=(kI) + (D2) ∗ 2>B(kI)

D3


(3)

Where G and H are the positions in the world coordinates,

D1(linear velocity along X), D2(linear velocity along Y) and

D3(angluar velocity along Z) are the control velocities, kI and

lI are the angular position and angular velocity respectively.

The control vector is given by (Eq. 4),

DC = (+GA4 5 , +HA4 5 , lIA4 5)
⊤ (4)

Where DC is the control signal containing the body veloc-

ities in the x,y and k direction respectively. This is used to

predict the estimated state in EKF algorithm.

Measurement Model

From Eq. 5 and the state vector in Eq. 2 the measurement

model is then given by the vector,

And the mobile robot measurements,

HC = ℎ(GC) + 4C (5)

Where 4C is a Gaussian measurement noise in Eq. 1 and

Eq. 5 accordingly.

The HC is the measurement vector containing the measure-

ments form the IMU sensor, Light house position data and

the encoder data, the IMU sensor outputs data from the ac-

celeromotor which is the measure of 0G , 0H this data has been

fused with the Light house data which outputs the position for

-F>A;3 , .F>A;3 and k1>3H and the encoder data +G ,+H and FI
to correct the estimated state from the control signal. This has

been done in the final step of the EKF algorithm called the

correction step.

[
HC
]
=



G

H

kI
+G
+H
lI
0G
0H



(6)

3. Extended Kalman filter

As it was mentioned before, an EKF (Extended Kalman Filter)

has been employed to preform the localization of this robot.

Such algorithm relies on two steps sequence: Prediction step

and the Correction step. The updates for the state and the

covariances are performed in Eq. 1 and 7 respectively,

%C+1 |C = �%C |C�
⊤ +& (7)

Where ĜC |: is intended to be the estimate of G at time C

given the control signal up to time : . Now, when the state

space model is linearized to � the covariance update is possi-

ble. Further, the Kalman filter equations for the measurement

update is seen in 8,

 C = %C |C−1�
⊤
C (�C%C |C−1�

⊤
C +&4)

−1 (8)

ĜC |C = ĜC |C−1 + C (HC − ℎ(ĜC |C−1)) (9)

%C |C = (� − C�C)%C |C−1 (10)

3.1 Predict for EKF

The prediction for the EKF is preformed by equation 1 and

7.However, the prediction in this project differs from the pre-

vious in the following way, we have a more states in our state

space model, where our control signal is updating the posi-

tion states and the orientation states. The acceleration states

are updated using the accelerometer readings. Thus, there are

in total 5 sates as can be seen in equation 2. To predict the

covariance matrix it is then required to linearizer the state

space model with a Taylor series expansion, this creates a 5x5

matrix which is the Jacobian matrix, the Jacobian matrix has

been used to predict the covariance of the system.

3.2 Correct for EKF

After the prediction is complete, the correction of the predicted

state is facilitated from the measurements on the robot, the

measurements are two IMU readings i.e. the accelerations

along X axis and the Y axis, the position data from the HTC

vive lighthouse deck and three encoder readings, by taking the

difference in the innovation seen in equation 9, the Kalman

gain calculated will help to weigh the different measurements

form the sensors and the final estimated state is reached, this is

Tracking of a high precision robot

45

Figure 5. ROS graph

where the ’sensor fusion’ is completed. The corrected estimate

is then sent to the controller as input. for the next iteration the

correction of the covariance matrix is preformed and is fed

back to the predicted step along with the new control signal

and the corrected estimated state, the cycle continues until the

final desired position is achieved.

4. Implementation

4.1 ROS

The software for the robot to control and estimate its position

is done using ROS. ROS that stands for Robot Operating sys-

tem is an open-source robotics middle-ware. Although it is not

an actual operating system but a collection of software frame-

works for robot software development. It provides services

designed for a heterogeneous computer cluster such as hard-

ware abstraction, low-level device control, implementation of

commonly used functionality, message-passing between pro-

cesses, and package management. The operating processes in

ROS can be represented using a ROS graph where the opera-

tions happen in the nodes that may receive, send or multiplex

sensor data and other messages such as control signals and set

points. The other features that ROS provides is suite of de-

bugging tools that enable us to plot data from the ROS topics

in real time and check for inconsistencies. In this project ROS

is used as framework for multiple python nodes that perform

different tasks within the robot application. The ROS graph

in the following figure 5 is the ROS graph that shows all the

nodes and how they communicate with each other and the

hardware using the respective ROS topics.[3]

4.2 Message passing

Since the body velocity obtained by the wheel velocities is one

of the sensory data used in the EKF, we need to extract wheel

speeds from the motors at every iteration. The ROS-node we

initially used didn’t accommodate for timing and this led to the

robot loosing its control over the motors every time we read

the sensor data. This was a result of the bus used to read and

write to the motor being a shared variable between the reading

and the writing functions. To fix this conflict, we introduced

a ROS service which whenever invoked would obtain a lock

over the bus to read the sensor data and release it whenever it is

not using it thus removing the conflict between the 2 processes

trying to access the bus.

4.3 Control signal

From the above section we can see that the control node in

the ROS system, subscribes to the /?>B4 and the /B4C ?>8=C

topics. It computes the errors along X, Y andk. It then runs the

error through a PI controller and computes the corresponding

correction body velocities that are fed to the robot as control

signals in the form (+G ,+H ,lI). This body velocity is then

converted to wheel velocities and then to motor PWMs in

the direction_to_wheel_speeds, and the control_signals nodes

respectively.

4.4 Kinematics

As we are using a 3-wheel omnidirectional setup, we need an

inverse kinematic model to transform the linear and angular

velocities of the body to wheel speeds. In our case, d is the

distance of each wheel from the centre of the robot, r is the

radius of the wheel and in a general case, angle U8 is the angle

between the axes of the wheels. The angle \ is the angle of

the first wheel from the X axis of the robot body frame. In our

robot, the values of \, U1, U2 and U3 are 30 deg,0 deg, 120 deg,

and 240 deg respectively. The corresponding transformation

can be represented using the following matrix.

'� =

©­
«

−B8=(\) 2>B(\) 3

−B8=(\ + U2) 2>B(\ + U2) 3

−B8=(\ + U3) 2>B(\ + U3) 3

ª®
¬

(11)

©­
«
+1

+2

+3

ª®
¬
= '� ·

©­
«
+G
+H
lI

ª®
¬

(12)

This matrix was used in the direction_to_wheel_speeds

node to convert the robot velocity from the control node to

wheel velocities that is further used to move the robot in the

desired way.

Additionally, a rotation matrix (Eq. 13) is applied to the

motion body frame to fully describe the velocities +G , +H and

angular velocity lI from the wheel velocities +1, +2 and +3

(Eq. 14). Due to the symmetric nature of the robot, the forward

kinematics can be computed by directly inverting the Inverse

Kinematic transformation from (Eq. 11).

'� = '−1
� (13)

©­
«
+G
+H
lI

ª®
¬
= '� ·

©­
«
+1

+2

+3

ª®
¬

(14)

This matrix was used to compute the body velocities from

the wheel velocities in the robot_control node which is further

used in the localization_filter.

4.5 Calibration of encoder measurements

The measurements from the encoders had to be calibrated for

the controller, as the EKF algorithm is running at 10000 Hz

the encoder measurements had to be scaled to compensate

for the frequent update of the EKF. Thus, at first the encoder

values where too small in the algorithm, the controller would

run the control commands more frequently than necessary, the

encoder measurement where multiplied by a thousand and a

destination of 10cm was given to the robot, the robot would

reach around 3.1cm which was then compensated for by divid-

ing the 1000 by 3.19 to reach the desired scaling factor which

would reach the 10cm mark with a ±1mm error.

Shahin A, Venkanagoud Patil V

46

4.6 Tilt Compensation

Due to the unevenness of the ground, the robot would have

a tilt error form the IMU reading, that would result in the

robot control to incorrectly compensate for this tilt. This is

implemented to remove any effect of the acceleration due to

gravity appearing on the other axes namely x and y. In an

ideal scenario, when the robot is stationary on a completely

flat surface, the acceleration across z should be -g and 0 across

x and y axes. In order to achieve tilt compensation, we acquire

the accelerometer data along x,y and z. We then compute the

orientations of the IMU in the X-Z plane and the Y-Z plane.

Upon obtaining these angles, we know that the accelerometer

orientations in the space. We then project the raw values onto

the corrected axes. This is well described in the following

equation 15-18.

qG = C0=
−1 (022A0FG /022A0FI) (15)

qH = C0=
−1 (022A0FH /022A0FI) (16)

022
2><?4=B0C43
G = 022A0FG · 2>B(qG) (17)

022
2><?4=B0C43
H = 022A0FH · 2>B(qH) (18)

4.7 Path planning

An algorithm was implemented to automate the motion of the

robot in a continuous loop of points chosen. This algorithm

keeps track of the error i.e. the euclidean distance between

the current position and the destination. When the error is

smaller than the resolution of the robot, the next destination is

automatically selected and the robot starts moving to the next

position. The path planned is a square with the sides of length

10 cm.

4.8 Extended Kalman filter

The pseudo algorithm seen in algorithm 1 represents the EKF

algorithm.

Algorithm 1: Extended Kalman Filter Algorithm

while currentSimulationTime < simulationTime do
Calculate the state estimate with the control

commands from the previous time step;

Calculate the error covariance with the Jacobian

of the model;

Calculate the measurement residual;

Calculate the Kalman gain;

Correct the state estimate with the Kalman gain;

Correct the error covariance;

end

As in the previous project the group relied on the help of

[5, pp. 203–220]. for the completion of the EKF algorithm,

as well as the experience the group members gained from the

previous projects.

Predict algorithm Equation 21 shows the Jacobian matrix

of the state space, the Jacobian is required to predict the co-

variance matrix.

0 = −3C ∗ ((D1) ∗ B8=(kI) + (D2) ∗ 2>B(kI)) (19)

1 = 3C ∗ ((D1) ∗ 2>B(kI) − (D2) ∗ B8=(kI)) (20)

� =

©­
«
1 0 0

0 1 1

0 0 1

ª®
¬

(21)

Correct algorithm As our observation model needs to be

weighed for the correction step its Jacobian is shown in equa-

tion 22, as previously mentioned the output of the update step

is again fed into the Predict State and the cycle goes on until

the final position is estimated with in a satisfactory frame.

�C =

©­­­­­­­­­­­
«

1 0 0

0 1 0

0 0 1

3C 0 0

0 3C 0

0 0 3C

0.5 ∗ (3C ∗ 3C) 0 0

0 0.5 ∗ (3C ∗ 3C) 0

ª®®®®®®®®®®®
¬

(22)

5. Results

The EKF algorithm with sensor fusion from the three encoders

is finalized and have the same units as the control signal values,

the IMU units are adjusted to the control signals units as well

as the data from the HTC VIVE light house. As well as the

re-tuning of the PI controller to accommodate the new control

signal units. The ROS network and the inverse kinematics

have been adjusted to the project, debugged and are running

as expected. The MSE error for the localization was computed

and the values stayed between 6.53 ∗ 10−8 to 7.4 ∗ 10−8 along

X and 5.23 ∗ 10−8 to 5.59 ∗ 10−8 along Y when run for 15

minutes in a square trajectory.

5.1 Repeatability and Reliability

From the path planning node the robot had an automated

loop that moved in a square with sides of length 10cm, at

every corner of the square a point is made, this test is done to

visually see the error distribution as the robot moves along the

square in an infinite loop, the position estimate of the EKF as

well as the measured light house measurements are plot and

can be seen in figure 6 where the units for the x and y axis

are in meters, the EKF position estimate is in red and the light

house position measurement is in blue. Further, the light house

measurement was blocked to test the effect of the light house

measurement, the results of that test can be seen in figure 7, the

light house measurement is the dominant measurement in the

sensor fusion done by the EKF, the light house was blocked

in the right top corner of the square the robot then moved

around 17cm in the x direction 7.4cm in the y direction, the

EKF flowed the Light house. In figure 8 the markings on the

floor have a error radius distribution of maximum of 3.5mm

Tracking of a high precision robot

47

Figure 9. 3mm radius error distribution when running the robot

clockwise and anti clock wise

Figure 10. horizontal total distance and error when running clock

wise and anti clockwise

Figure 11. Vertical total distance and error when running clock

wise and anti clockwise

as the measurement engineer Alina did not have a possibility

to meet with us during the holidays. Thus, the team replaced

the Leica measurements with the Light House measurement,

the light house measurements are less accurate with 4cm but

is more reliable when it comes to moving target, as seen in

5.1 the resolution of the position estimate relative to the reso-

lution of the Light house measurement resulted in a 10 folds

improvement form 4cm to around 3mm. The final set up of the

algorithm and results were presented on the 14th of January

to the faculty members and students at LTH.

6.2 Project dynamics

The dynamics of the group has been under pressure, as one

of our group members decided to drop the course. Further,

the testing of the robot was scheduled to be on the 8th of

December, thus the group was required to be 4 weeks ahead of

schedule, this resulted in long night (the longest night lasted

until 5 in the morning) in the lab to get everything debugged

and working. Results of the work were investigated on the 8th

and reported soon after. Finally, the group missed one week of

supervisor help due to the robot lab week, which resulted in

the investigation of quaternion which was not necessary to the

project, the python package built by Anders Blomdell that is

responsible for controlling Dynamixel motors did not account

for negative values in the register. Thus, some hours were

spent to understand and process the negative values from the

Dynamixel motors. Due to the circumstances and the nature of

a project was proposed by the authors. Resulted in the authors

having to be more self reliant, compared to other projects.

Tracking of a high precision robot

49

6.3 Project outcome

The project was a challenging endeavour for the time assigned

to it, many over time hours were invested into the project for

the final results, the majority of the time was investigating and

debugging the code implementation for better results. As the

project has not been done before many unknown unknowns

where realised as the project developed, this project contains

information form the majority of the courses taken previously

by the authors and some courses that haven’t been taken at

all. The investigation in this project will further develop in the

authors thesis work, that will be worked on in the spring.

References

[1] DynamixelSDK. https://github.com/ROBOTIS-GIT/

DynamixelSDK. Accessed: 2021-12-1.

[2] V. V. Patil and L. D. Carrera. OmniWheel Robot. The

Faculty of Engineering at Lund University, 2021-06-01.

[3] ROS. https://ros.org. Accessed: 2021-12-1.

[4] A. Shahin. Tracking of a high precision robot. The Fac-

ulty of Engineering at Lund University, 2021-06-01.

[5] S. Thrun. Probabilistic robotics. Vol. 45. 3. ACM New

York, NY, USA, 2002.

Shahin A, Venkanagoud Patil V

50

