Pragmatic Programming
Session 6 - Geometry, Number Theory, and Probability

Max Nilsson
November 30th

Combinatorics

® The principle of inclusion and exclusion:

n \JI+1 .
° ‘ Ui:l A { Zw;éjc{l ,n} ’ m AJ’
® Example: Calculate how many numbers in {1, ...,n} which are
relatively prime to every prime in some set P consisting of primes.

* Compute Binomial coefficients (") modulo a prime p.

® Lucas's Theorem: Write m = Zf:o myp",n = Zf:o n,p” then

() =11()

Probability

® | have really nothing to add here since | am not very good at
these types of problems.

® Sometimes they reduce to a dp formulation, where the states
contain double. Then you have to pray to Kattis that
multiplying a bunch of double or long double does not ruin
your final answer. See Memory for such a problem.

® QOther times you have to use basic probability methods, such as
Bayes' Theorem

P(A|B)P(B) = P(B|A)P(A)
and expected values

E[X] = / XdP.

. See Infection Estimation for such a problem.

https://open.kattis.com/problems/memory2
https://open.kattis.com/problems/infectionestimation

Number Theory

Primality test of a lot of small (< 10°) numbers - Use Sieve of
Eratosthenes with complexity O(nloglogn) (Eratosthenes was a
Greek mathematician born 276 BC and was the first international
grandmaster on codeforces).

Primality test of some large (< 10'®) numbers - Use Miller-Rabin
with complexity O(klog® n) where k is dependent on the input.

Factor numbers - Use a preprocessed Sieve of Eratosthenes or
Pollard’s Rho algorithm with complexity O(n'/4).

For finding the greatest common divisor, use __gcd, and for
finding a solution (xo,yo) to the linear Diophantine equation

ax + by = gcd(a, b)

use the Euclidean algorithm with time complexity O(logn).

Geometry

This is probably the deepest of our topics today. Most of the geometry
will be in R2 or even Z2. Always avoid double’s as much as possible!

® Many simple problems can actually be quite tricky to figure out.
Example: given two segments in R?, decide whether they
intersect or not.

® Computing the convex hull in R? can be done in O(nlogn) with
either a divide and conquer method or a Graham scan.

® The convex hull in R? can be done with an incremental convex
hull algorithm in O(n?).

® The area of a (non-convex) polygon can be found by

T polygonArea2(vector<Point<T>>& v) {
T a = v.get_back().cross(v[0]);
rep(i,0,sz(v)-1) a += v[i].cross(v[i+1]);

return a;}

® The minimum circle that encloses a collection of points in R? can
be found with dp and with complexity O(n)!

This Week

® Skim read chapter 15 and 16 in Sannemo! and chapter 13 in

Laaksonen?.

e Also check out this resource for a text on competetive
computational geometry.

® Solve half of this weeks 10 problems.

1Johan Sannemo. “Principles of Algorithmic Problem Solving”. In: Draft
version (2018).
2Antti Laaksonen. Guide to competitive programming. Springer, 2020.

https://victorlecomte.com/cp-geo.pdf

