
Pragmatic Programming
Session 4 - Dynamic Programming

Max Nilsson
16th November

1



The Idea

• Combine recursion with memoization.
• The hard parts are

• Which states should I use for the recursion?
• How should I store the cached values in memory?
• How should I iterate through the recursion tree? Top-Down or

Bottom-Up? There are pros and cons with both approaches.

• Luckily, in C++ there is usually not much slowdown associated
with multiple recursive calls and there is no pre-determined
recursion depth that must be manually changed (looking at you
python).

• A good thing is that you can almost always easily convince
yourself of your algorithms complexity and if it is viable
beforehand.

• Even though dp is almost surely overhyped as a buzzword, when
it works, it is in my opinion one of the most magical things in
algorithmic problem solving.

2



The Design Pattern I Always Use

const int mxn = 500;

int dp[mxn][mxn]; // initialized as -1

int getdp(int i, int j) {
// return for basecase

// return if already computed in dp

int res;

// compute res with recursive calls to getdp

dp[i][j] = res;

return res;

}

If the space complexity of dp is O(n) and the recursive calculations of
res are O(m) then the overall complexity of getdp is (at most)
O(nm).

3



Live Coding Example

• This theory is really all that is necessary for solving most dynamic
programming problems. The rest is really just practice.

• Tip: Look out for small input limits as hints that the problem can
be solved with (2-D) dynamic programming.

• Now I Will live code Hamming Ellipses!

4

https://open.kattis.com/problems/hammingellipses


This Week

• Skim read parts of chapter 9 in Sannemo1 and chapter 6 in
Laaksonen2.

• Solve half, rounded down, of this weeks 11 problems.

1Johan Sannemo. “Principles of Algorithmic Problem Solving”. In: Draft
version (2018).

2Antti Laaksonen. Guide to competitive programming. Springer, 2020.
5


