
Pragmatic Programming
Session 2 - Data Structures and Complexity

Max Nilsson
26th September

1



O! Darling ...

• Formally: f ∈ O(g) if there exists M such that f(x) ≤ Mg(x)
for x large enough ⇐⇒ lim sup f/g < +∞.

• With appropriate abuse of notation: f(x) = O(g(x)). We will
always use O in the tight sense (usually reserved for Ω).

• Binary Search = O(logn) is tight.
• Binary Search = O(n) is true, but not tight.
• This convention avoids contradictions such as

O(n) = Binary Search = O(logn).

• Time complexity calculus works intuitively. For instance:

rep(i, 0, n) O(log n); // O(n log n)

• In Kattis, when writing in C++, if your code is correct and has
good enough time complexity, it should pass (if the problem is
not too difficult).

• In a simplified way, if your algorithm has time complexity O(f)
and input size n, then if f(n) ≤ 1e8 you should be fine.

2



... Please Believe Me

• Avoid the common mistake when getting Time Limit Exceeded

(TLE) of optimizing O(1)-stuff (i.e., stuff that does not change
the overall complexity). If your complexity is too large to begin
with, this will never work.

• Consider the following example. You are given a list of n ≤ 1e6

integers and you want to know if there exists two elements that
sum to some value x. Naive O(n2) solution:

rep(i, 0, n) cin >> v[i];

rep(i, 0, n) rep(j, 0, n) if (v[i]+v[j] == x)

{cout << "YES\n"; return; }
cout << "NO\n";

• If we replace the second line with

rep(i, 0, n) rep(j, i+1, n)

we get something that is (twice) faster! But the time complexity
is still O(n2) and will get TLE.

• Important lesson: you should always assume that the worst
possible test case exists among the hidden ones. 3



Example continued

• Amazingly, there exists two natural ways of solving the previous
problem with a better complexity.

• First sort the vector v, with complexity O(n log n), and then use
a two-pointer method

int l = 0, u = n-1;

which traverses the array with appropriate l++ or u--, and
complexity O(n). In total, we get complexity

O(n log n+ n) = O(n log n).

• The fastest way is to simply linearly traverse the array, while
keeping track of all the elements seen so far in an
unordered set<int>. Note that both .insert(v[i]) and
.count(x-v[i]) have complexity O(1) and so the total
complexity is linear O(n).

4



The Complexity of Factorization

• Given n ≤ 1e18 output the prime factors of n.

• Naive algorithm is searching through all 2 ≤ k ≤
√
n and

performing

while(!(n%k)) cout << k << ’\n’, n/=k;

and if no k was outputted, then n is prime.

• This algorithm is O(
√
n). But it should never be used!

• If you have 1e6 queries, each wanting the factors of some
n ≤ 1e6 then do some preprocessing sieve. See Product Divisors.

• If you only have a few queries, but n ≤ 1e18 is large, then use
Pollard’s Rho Algorithm. It is a probabilistic algorithm with
complexity O(n1/4).

• Corpus Idea: Improve the Omogen Heap implementation of
Pollard.

5

https://open.kattis.com/problems/productdivisors
https://github.com/kth-competitive-programming/kactl/blob/main/content/number-theory/Factor.h
https://github.com/kth-competitive-programming/kactl/blob/main/content/number-theory/Factor.h


Vector

• Dynamically allocated array, with append method .pb(x) with
complexity dependent on memory availability. In general, you can
treat it as an O(1)-operation (at least according to Bjarne
Stroustrup).

• The converse .pop back() is definitely O(1).
• Consider using v.back() instead of the clumsy v[v.size()-1].
• Lookup v[i] is constant but .erase(v.begin()+i) should be

avoided as it is O(n).
• Iterate with either

rep(i, 0, v.size()) v[i]; or for (auto x : v);

The keyword auto is modern C++ where the compiler infers the
type. It should not have any runtime downsides. Not writing
auto& might have runtime downsides.

• Sort in O(n log n)

sort(all(v), [](auto p1, auto p2){[...]};
• The binary search methods, when v is sorted,
lower bound(all(v), x) and upper bound(all(v), x) are
often useful, and are O(log n).

6



Stack and Queue

• Use stack<int> only for design purposes, since it is equivalent
with vector<int>.

• Use queue<int> as a FIFO-structure, with useful methods
.push(x), .front(), .pop(), all with (1).

• Example: Given a graph vi g[mxn]; which we know has a tree
structure and 0 as a root node, compute the depth of each node.

int depth = 0;

queue<int> q = {0};
while(q.size()) {
int x = q.size();

while(x--) {
int u = q.front(); q.pop();

depths[u] = depth;

for (int v : g[u]) q.push(v);

}
depth++;} 7



Priority Queue

• Extremely useful heap structure. The simplest version is
priority queue<int> which is a max priority queue.

• If you want a min priority queue (such as in Dijkstra’s

Algorithm) you must can write

priority queue<pii, vii, greater<pii>> pq;

The vii means that the priority queue should be implemented
on top of the vector data structure, and greater gives us a min
priority queue. Note that here pii(d, v) says that the distance
between to v is d.

• The useful methods are .push(x), .top(), pop(), which are
O(log n),O(1),O(log n) respectively.

8



Priority Queue with own Comparator

• Unfortunately there seems to be no lambda-way of defining a
priority queue with your own custom comparator.

• I use the following:

class ComparisonClass {
public:

bool operator() (const pii& p1, const pii& p2) {
if (p1.first != p2.first) return p1.first < p2.first;

return v[p1.second] > v[p2.second];

// may use external v in scope

};

• Which lets me write

priority queue<pii, vii, ComparisonClass> pq;

9



Set and Map

• I use set<int> st; often, but really it is just a special case of
map<int, int>. The useful methods are .insert(x),
.count(x), .erase(x), all are O(log n).

• For map<int, int> mp; the useful methods are [x],
.count(x), .erase(x), all are O(log n).

• One subtle note: doing the check

if (mp[x])

automatically assigns x to 0 if x was not in mp before. Therefore,
this check might increase the size of mp. The way I often do it is

if (mp.count(x))

• To traverse through mp we can simply

for (auto p : mp) cout << p.first << ’ ’ << p.second;

• There also exists binary search methods for maps, such as
mp.lower bound(x), which is O(log n).

10



Unordered Set and Map

• When changing the set<int> and map<int, int> to
unordered set<int> and unordered map<int, int> all
logarithmic complexities change to constant O(1).

• This does not necessarily mean that the code runs faster, but this
is often the case.

• These structures are implemented with some associated hash
function. For most basic data types, these hash functions are
already implemented in C++ standard library.

• One major exception is the pair<int, int> type and its
variants. Then you have to yourself implement a hash function
(but I have never had to do this myself).

11



Structures

• You really should never need to create a C++ Class, but the C
Structs are often useful.

• The compact syntax is

typedef struct Atom {
Atom* nxt;

int x;

} Atom;

• Now you can create an Atom by simply declaring it

Atom atom; atom.nxt = root; atom.x = x;

or you can allocate an Atom on the heap and get a pointer to it

Atom* atom = new Atom; atom->nxt = root; atom->x = x;

• Remember, don’t be afraid of pointer stuff. Learn them by
solving Kattis problems. :)

12



Disjoint-Set Structures (Union-Find)

• One of the most important data structures of all time.

• The key (and bottleneck) of finding a minimal spanning tree.

• Finds the connected components of a graph.

• It consists of a vector initialized as

vi v(mxn); rep(i, 0, mxn) v[i] = i;

• It also has two methods void union(int, int); and int

find(int); Naive implementation:

void union(int i, int j) {v[find(i)] = find(j);}
int find(int i) {while(v[i]!=i) i = v[i]; return i;}

Time complexity is horrendous O(n) for both union and find.

• Corpus idea: Write an efficient union-find.

13



Bitsets

• I honestly have not used bitset<mxn> a lot, but it is very
popular.

• It seems like they are space efficient and sometimes faster than
normal bit manipulation?

• For example, you can initialize

bitset<8> bt(15); bitset<16> bt("111");

and then perform useful methods such as .set(i), .flip(i),
.count(), .to string() and .to ulong().

• I don’t really have any wisdom here, but I still wanted to mention
them. Instead I will take the opportunity to thank you for
following the study circle and I hope you are having fun. :)

14



This Week

• Read Chapter 3 and 5 in Laaksonen1.

• Read Chapter 3, 5, and 6 in Sannemo2.

• Solve half of the weeks problems.

• If you feel inspired, begin with the corpus and upload your code
to the gitlab.

1Antti Laaksonen. Guide to competitive programming. Springer, 2020.
2Johan Sannemo. “Principles of Algorithmic Problem Solving”. In: Draft

version (2018).
15



Code Review

16


