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Representing Graphs

There are two common ways of representing graphs. In these slides we
will let n be the number of nodes and m be the number of edges in
the graph.

• As a (adjacency) matrix

int g[mxn][mxn];

where g[u][v] denotes the weight of the edge between u, v.
This weight could in turn represent the distance between u, v.
Note that g[u][v] = ∞ should be interpreted as that there
exists no edge between u, v.
The downside is that it has O(n2) memory complexity, which may
pass over to the time complexity in many algorithms.

• As a sparse matrix (adjacency list)

vii g[mxn];

where each g[u][i] contains a pair (v, d) which represents
that there exists an edge between u, v with weight d.
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Depth and Breadth First Search

• Depth first search can be implemented recursively

vi g[mxn];

bool vis[mxn];

void dfs(int u) {
vis[u] = true;

for (int v : g[u]) if (!vis[v])

dfs(v);

}

with time complexity O(m). Used for Topological sorting (topic
for later session) and Kosaraju’s algorithm (finding strongly
connected components).

• Breadth first search is a bit more tricky. It can be implemented
with a queue<int> as shown last session. The time complexity is
O(m) and can be used for path-finding. BFS is a special case of
Dijkstra’s algorithm. 3



Minimum Spanning Tree (Kruskal’s Algorithm)

A minimum spanning tree is a subset of the edges of a connected,
edge-weighted undirected graph that connects all the vertices together
and with the minimum possible total edge weight.

• Without loss of generality, it contains no cycles.
• Initialize a disjoint set data structure disj. First sort all the

edges with respect to its weights. Then go through one edge (d,
u, v) at a time and check if

disj.find(u) == disj.find(v).

If that is true, then we ignore the edge, otherwise we add the
edge to our (so far) incomplete spanning tree and do

disj.Union(u, v).

• Time complexity is

O(m logm+mα(n)) = O(m logm) = O(m log n)

where α : R → R is the inverse Ackerman function which is less
than 5 for all reasonable values (even for 22

265536

which does not
even fit into a long long long if that even was a thing). 4



Dijkstra’s Algorithm

Finds the shortest path between s, t in a graph with nonnegative
edge weights in O(m logm).

vii g[mxn];

ll dist[mxn];

void dijkstra(int s) {
rep(i, 0, n) dist[i] = LLONG MAX;

priority queue<pii, vii, greater<pii>> pq;)

dist[s] = 0; pq.push(pii(0, s));

while(pq.size()) {
pii p = pq.top(); pq.pop();

ll d = p.first, u = p.second;

for (pii q : g[u]) if(d+q.first < dist[q.second])

{dist[q.second] = d+q.first;

pq.push(pii(d+q.first, q.second));}
}

}
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Shortest Path with Negative Weights (Bellman-Ford)

Finds the shortest path between s, t in a graph with arbitrary edge
weights in O(nm).

• It basically repeats Dijkstra’s algorithm n− 1 times without using
a priority queue

vii g[mxn];

ll dist[mxn];

void bellman ford(int s) {
rep(i, 0, n) dist[i] = LLONG MAX;

dist[s] = 0;

rep( , 0, n-1)) {
rep(u, 0, n) for (auto p : g[u])

if(dist[u]+q.first < dist[q.second])

dist[q.second] = dist[u]+q.first;

}
}

6



Shortest Path between All Pairs of Nodes

(Floyd-Warshall)

Finds the shortest path between all pairs of nodes in a graph with
arbitrary edge weights in O(n3). In the following code, the adjacency
matrix will be modified to represent the shortest paths.

int g[mxn][mxn];

void floyd warshall() {
rep(i, 0, n) g[i][i] = 0;

rep(k, 0, n) rep(i, 0, n) rep(j, 0, n)

if (g[i][j] > g[i][k] + g[k][j])

g[i][j] = g[i][k] + g[k][j];

}

Note that the if time complexity is viable then so is the space
complexity of the adjacency matrix.
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Strongly Connected Components (Kosaraju)

A strongly connected component is a subgraph such that every pair of
nodes is reachable by some path. Kosaraju’s algorithm finds all such
such components of a graph and it uses a stack st, two depth first
searches and a reversed graph g rev, resulting in an O(m). See video!

void dfs1(int u) {
vis1[u] = true;

for (int v : g[u]) if (!vis1[v]) dfs1(v);

st.push(u) };
void dfs2(int u, int repr) {

vis2[u] = true; who[u] = repr;

for (int v : g rev[u]) if (!vis2[v]) dfs2(v, repr);

}
void kosaraju() {

rep(u, 0, n) if (!vis1[u]) dfs1(u);

while(q.size()) { int u = st.top(); st.pop();

if (!vis2[u]) dfs2(u, u); } } 8

https://www.youtube.com/watch?v=qz9tKlF431k


Trees and Prüfer Sequences

• A tree is a connected undirected graph with n− 1 edges.

• Consider a labeled tree, with labels 1, 2, . . . , n, and construct the
following sequence of n− 2 numbers. Iterate the following
procedure n− 2 times: remove the leaf with the lowest label and
append its connected node.

• The resulting sequence is called a Prüfer sequence.

• The British mathematician Arthur Cayley (1821-95) proved the
amazing Cayley’s Formula: Prüfer sequences provide a
bijection between the set of labeled trees on n vertices and the
set of sequences of length n− 2 on the labels 1 to n.

• A corollary to this is that there exists nn−2 labeled trees on n
vertices (up to isomorphism of labeled trees).
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Eulerian Paths, Cycles and Live Coding

• An Eulerian path is a path in a graph that visits every edge
exactly once and may visit the same node multiple times.

• An Eulerian cycle is an Eulerian path that is also a cycle! In other
words, it must begin and end in the same node.

• Recall that the degree of a node in an undirected graph is the
number of edges connected to it.

• Euler’s Theorem: In an undirected graph, there exists an
Eulerian cycle if and only if every node has even degree.

• Proof: ( =⇒ ) Direct.
( ⇐= ) Use Euler’s characteristic V − E + F = 2 and some
imagination. □

• Real life application of this theorem: Christmas Gifts.

10

https://open.kattis.com/problems/christmasgifts


What we will save for later

• Dynamic programming methods in graph algorithms.

• Matchings, cuts and flows.

• Treaps and topological sorting.

• Check out the boost graph library.

• More advanced stuff?
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https://www.boost.org/doc/libs/1_83_0/libs/graph/doc/table_of_contents.html


This Week

• Skim read parts of chapter 12 in Sannemo1 and chapter 7 in
Laaksonen2.

• Solve half of this weeks 12 problems.

1Johan Sannemo. “Principles of Algorithmic Problem Solving”. In: Draft
version (2018).

2Antti Laaksonen. Guide to competitive programming. Springer, 2020.
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