
Pragmatic Programming
(for the non-competitive programmer)

Session 1 - Introduction

Max Nilsson
19th September

1



How This Course Will Work

• This course will be the solution to the optimization problem

maximize
hp, fun
overhead

hp+ fun− overhead

• The Aim: improve your problem solving skills, while learning
fundamental concepts, algorithms and coding C/C++ - which can
help you in your future research!

• The details:
• 7.5 hp
• Weekly 2 hour sessions
• Examiner: Pontus Giselsson

• Each week we will
• Discuss last week’s topics
• Introduce a new topic with accompanied light reading and Kattis

problems
• Code review each others solutions
• Expand the corpus

2



For the Non-Competitive Programmer

• This is not a course in competitive programming.

• Instead, we will try to extract the best things from competitive
programming, in a study circle setting, such as

• Quickly identify what class a problem lies in (Graph/Dynamic
Programming (DP)/Searching)

• Knowledge of a large variety of algorithms
• Experience of solving problems
• Being able to debug your code without a debugger
• Being able to write semi-efficient code
• Being comfortable in C/C++

3



Why Follow This Study Circle?

• To successfully solve various data-related problems, both solid
theoretical knowledge and the ability to apply this knowledge in
practice are required. This course focuses on the ability to apply
theoretical knowledge of algorithms, data structures, and
complexity to given problems. Being able to quickly analyze a
problem, assess the complexity of proposed algorithms, and
implement a solution rapidly and accurately are valuable skills in
the workplace. - from the KTH course ”Problem Solving and
Programming Under Pressure”

• Hopefully it will be fun! and you will find your fun niche!
• Solving easy/hard problems
• Solving problems efficiently
• Solving problems fast
• Implementing data structures/algorithms efficiently

4



Resources

• We will have a look at the following books
• Principles of Algorithmic Problem Solving, by Johan Sannemo

(once used in the Competetive Programming course at KTH)1

• Guide to Competitive Programming - Learning and Improving
Algorithms Through Contests, by Antti Laaksonen2

• (Supplementary Material) Competitive Programming,
by Steven and Felix Halim3

• We will solve problems from the Kattis website

https://open.kattis.com/

• The gitlab page

• Join the ”Pragmatic Programming” WhatsApp group

1Johan Sannemo. “Principles of Algorithmic Problem Solving”. In: Draft
version (2018).

2Antti Laaksonen. Guide to competitive programming. Springer, 2020.
3Steven Halim, Felix Halim and Suhendry Effendy. Competitive programming 4:

The new lower bound of programming contests in the 2020s. Lulu. com, 2018.
5

https://open.kattis.com/
https://gitlab.control.lth.se/regler/pragmaticprogramming


Examination

Each week, a set of problems will be provided for you to solve,
and if you successfully tackle at least half of these problems

every week, you will pass the course.

You can find the problems here: https://lth.kattis.com/courses

6

https://lth.kattis.com/courses


This Week

• Setting up your workspace
• Install a C++ compiler (I use g++ installed with

sudo apt-get install g++)

• Choose an editor (I use Sublime)
• Make sure you can compile a Hello World program (I compile

with

g++ -std=c++14 -o solve solve.cpp ; ./solve

on macOS)
• If you run into any problems - write in the Whatsapp group and I

am sure someone can help you (this someone’s name starts with
Max N but does not end in ilsson)

• Solve your first Kattis problem (I recommend Hello World)
• Skim-read Chapters 1 and 2 in Sannemo (the team leader for the

Swedish team in the Olympics of competitive programming, also
at rank 13 on the Kattis global leaderboard) and Laaksonen
(Department of Computer Science, University of Helsinki).

• Solve some of the first week’s problems (see upcoming slide)

7

https://open.kattis.com/problems/hello


Subjective Tips

• Don’t spend to much time optimizing your workflow - spend the
time solving problems.

• Use C++. Otherwise you will learn the hard way why you should
use C++. The main reasons:

• C has no built-in ”dynamic memory types” such as

string, vector, map, set, pair<T, S>

• C has no built-in algorithms such as

sort, next permutation, lower bound

• I/O in C is fast but not very easy (for instance, dynamically
realloc() for char* ...)

• C++ has all the great things C has such as pointers and structs.

• Use include <bits/stdc++.h> for all relevant standard
libraries. On macOS there is some problems with this, but on
Linux it should work fine.

8



Subjective Tips

• Learn coding C++ by doing easy problems - I claim that there is
no faster and more fun way of learning the basic
syntax/structures of a language.

• Use already implemented algorithms when you need them. A
good source is

https://github.com/kth-competitive-programming/kactl

and soon our corpus of algorithms.

• Use using namespace std and well-chosen #define,

typedef and some debug flag.

9

https://github.com/kth-competitive-programming/kactl


My Setup

#include <bits/stdc++.h>

using namespace std;

#define Mod(x,y) (((x)%(y)+(y))%(y))

#define rep(i, a, b) for(int (i) = (a); (i) < (b); ++(i))

#define all(x) begin(x), end(x)

#define pb push back

#define gcd gcd

#define sz(x) (int)(x.size())

typedef long long ll;

typedef unsigned long long ull;

typedef pair<int, int> pii;

typedef vector<int> vi;

typedef vector<pii> vii;

10



My Setup

const bool debug = false;

void solve() {
[... code here ...]

}
int main() {

ios::sync with stdio(0); cin.tie(0);

cout << setprecision(10) << fixed;

int test = 1;

//cin >> test;

while(test--) solve();

return 0;

}

11



To Get You Started - I/O

• I/O is really simple in C++. Almost all you need to know is

cin >>, cout <<, cin.peek(), cin.ignore(), getline(cin, s).

• cin >> x; reads into x given the type of x (int, ll, double,

string)
• cout << x << ’\n’; outputs x to the standard output, with a

new-line.
• cin.peek() gives the next character in the standard input,

without consuming it.
• cin.ignore() consumes the next character in the standard input.
• getline(cin, s) reads the entire line into string s;

• Example: How to read a vector of n integers

const int mxn = 1e5;

vi v(mxn);

int n;

cin >> n;

rep(i, 0, n) cin >> v[i]; 12



To Get You Started - I/O

• Example: How to read an unknown amount of strings and display
the first letter of each string

string s;

while(cin >> s) cout << s[0] << ’\n’;

• Example: How to read an n×m matrix of characters

const int mxn = 100;

char mat[mxn][mxn];

int n, m;

cin >> n >> m;

rep(i, 0, n) rep(j, 0, m) cin >> mat[i];

13



To Get You Started - Basic Data Structures

• The usual suspects: char, string, int, ll, double.
Largest values of int, ll are

INT MAX = 231 − 1 ≈ 2e9, LLONG MAX = 263 − 1 ≈ 9e18.

Sometimes in Kattis you need larger values, then you write in
Python/Java. No such problems will be chosen in this course.

• Arrays of static size: int a[mxn]
• Vectors of dynamic size: vector<double> v with methods
.pb(x), .size()

• Types of queues: stack<int>, queue<int>,

priority queue<int>
• Maps: set<int>, map<double, int> and their unordered

variants, with look-up time of O(log n),O(1) respectively.
• Pairs of types: pair<int, double> with some different
initializations:

pair<int, double> p(0, 1.);

pair<int, pii> q = make pair(0, pii(1, 2));

14



To Get You Started - Kattis Error Messages

• There are several types of things that can go wrong when
submitting to Kattis

• Compile Error - Your program failed to compile. This should
never happen if you can compile your program locally.

• Run Time Error - Error during the run time of your program.
Probably either a segmentation fault or a signed integer overflow.

• Output Limit Exceeded - This has never happened to me.
• Memory Limit Exceeded - This has happened to me once or

twice. Try using more efficient data structures or use int instead
of ll (usually there is a more elegant solution which circumvents
these issues).

• Time Limit Exceeded - Your program is too inefficient (in C++

this is usually equivalent with wrong time complexity) or is stuck
in some infinite loop/recursion.

• Wrong Answer - Your program is wrong. In very very rare cases
there is an error in the Kattis test cases (this has happened to me
twice).

• Judge Error - This has never happened to me (and you are very
lucky if it happens to you).

15



Input Size vs. Time Complexity

If you already know about time complexity, the following table is good
to know about when dealing with time limit exceeded:

Input Size Time Complexity Examples

n ≤ 10 O(n!) next permutation

n ≤ 20 O(2n) Generate all subsets
n ≤ 500 O(n3) Floyd-Warshall, Bipartite Matching
n ≤ 5000 O(n2) 2-D Dynamic Programming
n ≤ 106 O(n log n) or O(n) Segment Trees, Convex Hull
n is large O(1) Bitwise operations, Math

Table: Table 3.1 from Laaksonen4

For an example of ”n is large”, see Keep Calm And Carry Off or
nnnnn where n ≤ 1010

6

.
4Antti Laaksonen. Guide to competitive programming. Springer, 2020.

16

https://open.kattis.com/problems/keepcalmandcarryoff
https://open.kattis.com/problems/nnnnn


Preliminary Schedule

Week 1 First Steps: Setup C++

Week 2 Data Structures and Complexity

Topic 1 Graphs
Topic 2 Dynamic Programming
Topic 3 Square Root Techniques
Topic 4 Flows, Matchings, and Cuts
Topic 5 Fenwick and Segment Trees
Topic 6 Treaps and Topological Sorting
Topic 7 Tries, Suffix Arrays, and Strings
Topic 8 Geometry, Number Theory, and Probability
Topic 9 Computational Game Theory (Sprague–Grundy)

17



Problems - Week 1

• Hello World!

• R2

• Faktor

• Herman

• Pizza Crust

• Aaah!

• Quadrant Selection

• Spavanac

• Stuck In A Time Loop

• Rot

• Fizz Buzz (Easy)

• Fizz Buzz 2 (Medium)

• Fizz Buzz 3 (Hard)

• Cold-puter Science

• Tarifa

• Trik

• Arithmetic Functions

• Logic Functions

• Booking a Room

• Everywhere

18

https://open.kattis.com/problems/hello
https://open.kattis.com/problems/r2
https://open.kattis.com/problems/faktor
https://open.kattis.com/problems/herman
https://open.kattis.com/problems/pizza2?tab=submissions
https://open.kattis.com/problems/aaah?tab=submissions
https://open.kattis.com/problems/quadrant?tab=submissions
https://open.kattis.com/problems/spavanac?tab=submissions
https://open.kattis.com/problems/timeloop
https://open.kattis.com/problems/rot
https://open.kattis.com/problems/fizzbuzz?tab=submissions
https://open.kattis.com/problems/fizzbuzz2
https://open.kattis.com/problems/fizzbuzz3
https://open.kattis.com/problems/cold
https://open.kattis.com/problems/tarifa
https://open.kattis.com/problems/trik
https://open.kattis.com/problems/arithmeticfunctions
https://open.kattis.com/problems/logicfunctions?tab=metadata
https://open.kattis.com/problems/bookingaroom
https://open.kattis.com/problems/everywhere


Live Coding!

Left Beehind

19

https://open.kattis.com/problems/leftbeehind

