Pragmatic Programming

Session 4 - Dynamic Programming

Max Nilsson
16th November



The Idea

Combine recursion with memoization.
The hard parts are
® Which states should | use for the recursion?
® How should | store the cached values in memory?
® How should I iterate through the recursion tree? Top-Down or
Bottom-Up? There are pros and cons with both approaches.

Luckily, in C++ there is usually not much slowdown associated
with multiple recursive calls and there is no pre-determined
recursion depth that must be manually changed (looking at you
python).

A good thing is that you can almost always easily convince
yourself of your algorithms complexity and if it is viable
beforehand.

Even though dp is almost surely overhyped as a buzzword, when
it works, it is in my opinion one of the most magical things in
algorithmic problem solving.



The Design Pattern | Always Use

const int mxn = 500;
int dp[mxn] [mxn]; // initialized as -1
int getdp(int i, int j) {
// return for basecase
// return if already computed in dp
int res;
// compute res with recursive calls to getdp
dpl[il [j] = res;

return res;

If the space complexity of dp is O(n) and the recursive calculations of
res are O(m) then the overall complexity of getdp is (at most)
O(nm).



Live Coding Example

® This theory is really all that is necessary for solving most dynamic
programming problems. The rest is really just practice.

® Tip: Look out for small input limits as hints that the problem can
be solved with (2-D) dynamic programming.

® Now [/ Will live code Hamming Ellipses!


https://open.kattis.com/problems/hammingellipses

This Week

® Skim read parts of chapter 9 in Sannemo! and chapter 6 in
Laaksonen?.

® Solve half, rounded down, of this weeks 11 problems.

1Johan Sannemo. “Principles of Algorithmic Problem Solving”. In: Draft
version (2018).
2Antti Laaksonen. Guide to competitive programming. Springer, 2020.



