
Pragmatic Programming
Session 6 - Geometry, Number Theory, and Probability

Max Nilsson
November 30th

1

Combinatorics

• The principle of inclusion and exclusion:
•
∣∣⋃n

i=1 Ai

∣∣ =∑∅≠J⊂{1,...,n}(−1)|J|+1
∣∣⋂

j∈J Aj

∣∣
• Example: Calculate how many numbers in {1, . . . , n} which are

relatively prime to every prime in some set P consisting of primes.

• Compute Binomial coefficients
(
m
n

)
modulo a prime p.

• Lucas’s Theorem: Write m =
∑k

r=0 mrp
r, n =

∑k
r=0 nrp

r then(
m

n

)
≡Zp

k∏
r=0

(
mr

nr

)

2

Probability

• I have really nothing to add here since I am not very good at
these types of problems.

• Sometimes they reduce to a dp formulation, where the states
contain double. Then you have to pray to Kattis that
multiplying a bunch of double or long double does not ruin
your final answer. See Memory for such a problem.

• Other times you have to use basic probability methods, such as
Bayes’ Theorem

P(A|B)P(B) = P(B|A)P(A)

and expected values

E[X] =

∫
XdP.

. See Infection Estimation for such a problem.

3

https://open.kattis.com/problems/memory2
https://open.kattis.com/problems/infectionestimation

Number Theory

• Primality test of a lot of small (≤ 106) numbers - Use Sieve of
Eratosthenes with complexity O(n log log n) (Eratosthenes was a
Greek mathematician born 276 BC and was the first international
grandmaster on codeforces).

• Primality test of some large (≤ 1018) numbers - Use Miller-Rabin
with complexity O(k log3 n) where k is dependent on the input.

• Factor numbers - Use a preprocessed Sieve of Eratosthenes or
Pollard’s Rho algorithm with complexity O(n1/4).

• For finding the greatest common divisor, use gcd, and for
finding a solution (x0, y0) to the linear Diophantine equation

ax+ by = gcd(a, b)

use the Euclidean algorithm with time complexity O(log n).

4

Geometry

This is probably the deepest of our topics today. Most of the geometry
will be in R2 or even Z2. Always avoid double’s as much as possible!

• Many simple problems can actually be quite tricky to figure out.
Example: given two segments in R2, decide whether they
intersect or not.

• Computing the convex hull in R2 can be done in O(n log n) with
either a divide and conquer method or a Graham scan.

• The convex hull in R3 can be done with an incremental convex
hull algorithm in O(n2).

• The area of a (non-convex) polygon can be found by

T polygonArea2(vector<Point<T>>& v) {
T a = v.get back().cross(v[0]);

rep(i,0,sz(v)-1) a += v[i].cross(v[i+1]);

return a;}

• The minimum circle that encloses a collection of points in R2 can
be found with dp and with complexity O(n)! 5

This Week

• Skim read chapter 15 and 16 in Sannemo1 and chapter 13 in
Laaksonen2.

• Also check out this resource for a text on competetive
computational geometry.

• Solve half of this weeks 10 problems.

1Johan Sannemo. “Principles of Algorithmic Problem Solving”. In: Draft
version (2018).

2Antti Laaksonen. Guide to competitive programming. Springer, 2020.
6

https://victorlecomte.com/cp-geo.pdf

