
Pragmatic Programming
Session 5 - Fenwick and Segment Trees

Max Nilsson
23rd November

1



A Puzzle

• Let n = 106 + 1. A rack of servers in a server hall can be
modelled by a 1-indexed array int servers[n] where
server[i] represents how warm server i is (1 ≤ i ≤ n).

• You will be given n range sum queries (a, b), and you should
supply the total temperature of the servers between server a and
b.

• Solution: Use a Prefix array.

• But suppose that you also should be able to handle the update
query type (a, x) which represents that the temperature of
server a has changed by x degrees.

2



The Fenwick Tree

• Draw a tree with root 0 and parent of node i is
p[i] := i-lsb(i) where lsb is the least significant bit operator.
Each node i should contain the range sum∑i

k=p[i]+1 servers[k].
• This tree will have n nodes, height O(log n), and width (nodes

per depth) O(n).
• The update and range queries can be done in O(log(n))

void updateFenwick(int a, ll x){
while(a < numberOfServers) {

fenwick[a] += x, a += (a & (-a));}
ll rangeSumFenwick(int a){

ll sum = 0;

while(a) sum += fenwick[a], a -= (a & (-a));

return sum;}

3



The Segment Tree

• The segment tree is more versatile than a Fenwick tree. It can
support more things and be generalized to a lazy and
multidimensional structure. The downside is that it takes double
amount of memory (but still O(n) space complexity) and that it
is harder to code.

• It can in principle be implemented to answer point updates and
range queries with respect to any associative function (in or case
addition).

• The idea is to let the root node of the tree contain the total range
sum

∑n
k=1 server[k] and let its two children contain the partial

sums
∑⌈n/2⌉

k=1 server[k],
∑n

k=⌈n/2⌉+1 server[k] respectively. The

full (balanced) binary tree is defined in this way recursively.
• As with the segment tree, the tree will be implemented with an

underlying implicit data structure (an array). This array will have
size bounded above by

⌈log2 n⌉∑
k=0

2k < 2⌈log2 n⌉+1 ≤ 2log2 n+2 = 4n = O(n)

and have height O(log n).
4



Queries on a Segment Tree (Updating)

• Updating the temperature of a server is pretty straight forward.
We simply traverse the tree from root to leaf and update all
nodes which hold information of server a. This can be
implemented recursively and have time complexity O(log n), since
this is the height of the tree.

void updateSegment(int v, int l, int r, int a, ll x) {
if (l == r) { segment[v] += x; return; }
int mid = (l + r) / 2;

if (a <= mid) updateSegment(v*2, l, mid, a, x);

else updateSegment(v*2+1, mid+1, r, a, x);

segment[v] = segment[v*2] + segment[v*2+1];

}

5



Queries on a Segment Tree (Range Sum)

• The idea here is pretty basic: recursively iterate through the tree
and accumulate the values needed.

ll rangeSumSegment(int v, int l, int r, int a, int b) {
if (a > b) return 0;

if (a == l && b == r) return segment[v];

int mid = (l + r) / 2;

return rangeSumSegment(v*2, l, mid, a, min(b, mid))

+ rangeSumSegment(v*2+1, mid+1, r, max(a, mid+1), b);

}

• What is fantastic is that this algorithm is O(log n). By induction,
one can show that the number of nodes visited for each depth in
the tree, is at most 4.

6



The Lazy Segment Tree

• Let us summarize what we have found so far

Point Update Range Update

Point Query Array -
Range Query Fenwick/Segment Lazy Segment

• It is possible to implement a lazy variant of the segment tree.
This structure only updates the nodes when needed and still has
complexities O(log n) for both range updates and range queries.

• Of course, a everybody seems to think I’m lazy segment tree can
also be used for the Range Update and Point Query combination.

• I won’t go into the details here, since I don’t really know them.
You can look up some information here and see an
implementation here.

7

https://cp-algorithms.com/data_structures/segment_tree.html##range-updates-lazy-propagation
https://github.com/kth-competitive-programming/kactl/blob/main/content/data-structures/LazySegmentTree.h


The Multidimensional Segment Tree

• Suppose that we have a matrix int mat[n][n] for which we
would like to perform point updates and range queries, where the
range is a subrectangle.

• Then we can basically build a segment tree, such that for each
node we build another segment tree. The first segment tree
represents the x-coordinate and the other segment trees represent
the y-coordinate.

• The space complexity would equal O(16n2) = O(n2), i.e. still
linear in the number of elements of mat.

• The update and queries would be worse, but not by much:
O(log2 n).

• A similar structure could be made for the Fenwick tree. See here
for an implementation.

8

https://github.com/kth-competitive-programming/kactl/blob/main/content/data-structures/FenwickTree2d.h


This Week

• Skim read chapter 11.2 in Sannemo1 and chapter 9 in
Laaksonen2.

• Solve half of this weeks 11 problems (truncated).

1Johan Sannemo. “Principles of Algorithmic Problem Solving”. In: Draft
version (2018).

2Antti Laaksonen. Guide to competitive programming. Springer, 2020.
9


