Pragmatic Programming

Session 2 - Data Structures and Complexity

Max Nilsson
26th September

O! Darling ...

Formally: f € O(g) if there exists M such that f(z) < Mg(z)
for x large enough <= limsup f/g < +o0.
With appropriate abuse of notation: f(z) = O(g(z)). We will
always use O in the tight sense (usually reserved for 2).

® Binary Search = O(logn) is tight.

® Binary Search = O(n) is true, but not tight.

® This convention avoids contradictions such as

O(n) = Binary Search = O(logn).

Time complexity calculus works intuitively. For instance:
rep(i, 0, n) O(logn); // O(nlogn)

In Kattis, when writing in C++, if your code is correct and has

good enough time complexity, it should pass (if the problem is
not too difficult).

In a simplified way, if your algorithm has time complexity O(f)
and input size n, then if f(n) < 1e8 you should be fine.

... Please Believe Me

® Avoid the common mistake when getting Time Limit Exceeded
(TLE) of optimizing O(1)-stuff (i.e., stuff that does not change
the overall complexity). If your complexity is too large to begin
with, this will never work.

® Consider the following example. You are given a list of n < 1e6
integers and you want to know if there exists two elements that
sum to some value z. Naive O(n?) solution:

rep(i, 0, n) cin >> v[i];
rep(i, 0, n) rep(j, 0, n) if (v[il+v[j] == x)
{cout << "YES\n"; return; }
cout << "NO\n";
® |f we replace the second line with
rep(i, 0, n) rep(j, i+1, n)

we get something that is (twice) faster! But the time complexity
is still O(n?) and will get TLE.

® Important lesson: you should always assume that the worst
possible test case exists among the hidden ones.

Example continued

® Amazingly, there exists two natural ways of solving the previous
problem with a better complexity.

® First sort the vector v, with complexity O(nlogn), and then use
a two-pointer method

int 1 = 0, u = n-1;

which traverses the array with appropriate 1++ or u--, and
complexity O(n). In total, we get complexity

O(nlogn+n) = O(nlogn).

® The fastest way is to simply linearly traverse the array, while
keeping track of all the elements seen so far in an
unordered_set<int>. Note that both .insert(v[i]) and
.count (x-v[i]) have complexity O(1) and so the total
complexity is linear O(n).

The Complexity of Factorization

Given n < 1e18 output the prime factors of n.

Naive algorithm is searching through all 2 < k < \/n and
performing

while(!(n%k)) cout << k << ’\n’, n/=k;

and if no k was outputted, then n is prime.

This algorithm is O(y/n). But it should never be used!

If you have 1e6 queries, each wanting the factors of some

n < 1e6 then do some preprocessing sieve. See Product Divisors.

If you only have a few queries, but n < 1e18 is large, then use
Pollard’'s Rho Algorithm. It is a probabilistic algorithm with
complexity O(n'/*).

Corpus Idea: Improve the Omogen Heap implementation of
Pollard.

https://open.kattis.com/problems/productdivisors
https://github.com/kth-competitive-programming/kactl/blob/main/content/number-theory/Factor.h
https://github.com/kth-competitive-programming/kactl/blob/main/content/number-theory/Factor.h

Vector

Dynamically allocated array, with append method .pb(x) with
complexity dependent on memory availability. In general, you can
treat it as an O(1)-operation (at least according to Bjarne
Stroustrup).

® The converse .pop_back() is definitely O(1).

® Consider using v.back() instead of the clumsy v[v.size()-1].
® Lookup v[i] is constant but .erase(v.begin()+i) should be
avoided as it is O(n).

Iterate with either

rep(i, 0, v.size()) v[i]; or for (auto x : W);

The keyword auto is modern C++ where the compiler infers the
type. It should not have any runtime downsides. Not writing
auto& might have runtime downsides.

Sort in O(nlogn)

sort(all(v), [](auto pl, auto p2){[...1};

The binary search methods, when v is sorted,
lower_bound(all(v), x) and upper_bound(all(v), x) are
often useful, and are O(logn).

Stack and Queue

® Use stack<int> only for design purposes, since it is equivalent
with vector<int>.
® Use queue<int> as a FIFO-structure, with useful methods
.push(x), .front(), .popQ), all with (1).
® Example: Given a graph vi g[mxn]; which we know has a tree
structure and 0 as a root node, compute the depth of each node.
int depth = 0;
queue<int> q = {0};
while(q.size()) {
int x = q.size();
while(x--) {
int u = q.front(); q.popQ);
depths[u] = depth;
for (int v : glul) q.push(v);
}

depth++;}

Priority Queue

® Extremely useful heap structure. The simplest version is
priority_queue<int> which is a max priority queue.

® If you want a min priority queue (such as in Dijkstra’s
Algorithm) you must can write

priority_queue<pii, vii, greater<pii>> pq;

The vii means that the priority_queue should be implemented
on top of the vector data structure, and greater gives us a min
priority queue. Note that here pii(d, v) says that the distance
between to v is d.

® The useful methods are .push(x), .top(), pop(Q), which are
O(logn),0(1), O(logn) respectively.

Priority Queue with own Comparator

® Unfortunately there seems to be no lambda-way of defining a
priority_queue with your own custom comparator.

® | use the following:

class ComparisonClass {

public:
bool operator() (const pii& pl, const pii& p2) {
if (pl.first != p2.first) return pl.first < p2.first;
return v[pl.second] > v[p2.second];

// may use external v in scope

}s

® Which lets me write

priority_queue<pii, vii, ComparisonClass> pq;

Set and Map

| use set<int> st; often, but really it is just a special case of
map<int, int>. The useful methods are .insert(x),
.count (x), .erase(x), all are O(logn).

For map<int, int> mp; the useful methods are [x],
.count(x), .erase(x), all are O(logn).

One subtle note: doing the check

if (mplx])

automatically assigns x to 0 if x was not in mp before. Therefore,
this check might increase the size of mp. The way | often do it is

if (mp.count(x))
To traverse through mp we can simply
for (auto p : mp) cout << p.first << ’ ’ << p.second;

There also exists binary search methods for maps, such as
mp . Lower _bound (x), which is O(logn).

10

Unordered Set and Map

When changing the set<int> and map<int, int> to
unordered_set<int> and unordered map<int, int> all
logarithmic complexities change to constant O(1).

This does not necessarily mean that the code runs faster, but this
is often the case.

These structures are implemented with some associated hash
function. For most basic data types, these hash functions are
already implemented in C++ standard library.

One major exception is the pair<int, int> type and its
variants. Then you have to yourself implement a hash function
(but | have never had to do this myself).

11

Structures

® You really should never need to create a C++ Class, but the C
Structs are often useful.
® The compact syntax is

typedef struct Atom {
Atom* nxt;
int x;

} Atom;

® Now you can create an Atom by simply declaring it
Atom atom; atom.nxt = root; atom.x = x;
or you can allocate an Atom on the heap and get a pointer to it
Atom*x atom = new Atom; atom->nxt = root; atom->x = x;

® Remember, don't be afraid of pointer stuff. Learn them by
solving Kattis problems. :)

12

Disjoint-Set Structures (Union-Find)

One of the most important data structures of all time.
The key (and bottleneck) of finding a minimal spanning tree.
Finds the connected components of a graph.

It consists of a vector initialized as
vi v(mxn); rep(i, O, mxn) v[i] = i;

It also has two methods void union(int, int); and int
find(int); Naive implementation:

void union(int i, int j) {v[find(i)] = find(j);}

int find(int i) {while(v[i]l'!=i) i = v[i]; return i;}

Time complexity is horrendous O(n) for both union and find.

Corpus idea: Write an efficient union-find.

13

Bitsets

| honestly have not used bitset<mxn> a lot, but it is very
popular.

It seems like they are space efficient and sometimes faster than
normal bit manipulation?

For example, you can initialize
bitset<8> bt(15); bitset<16> bt("111");

and then perform useful methods such as .set(i), .f1ip(i),
.count (), .to_string() and .to_ulong().

| don't really have any wisdom here, but | still wanted to mention
them. Instead | will take the opportunity to thank you for
following the study circle and | hope you are having fun. :)

14

This Week

Read Chapter 3 and 5 in Laaksonen®.
Read Chapter 3, 5, and 6 in Sannemo?.

Solve half of the weeks problems.

If you feel inspired, begin with the corpus and upload your code
to the gitlab.

LAntti Laaksonen. Guide to competitive programming. Springer, 2020.
2Johan Sannemo. “Principles of Algorithmic Problem Solving”. In: Draft
version (2018).

15

Code Review

16

