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The setting is a directed graph int g[mxn] [mxn] with
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and a sink node n.

In the min-cut problem we want to find the subset S of the
graph, such that 0 € S and n ¢ S, which minimizes the outgoing
capacities of S. Let this value be D.

In the max-flow problem we want to find a flow matrix int
flow[mxn] [mxn] which is both feasible (the flow of each edge is
non-negative and not greater than its capacity, and the inflow of
each non-sink/source node is equal to its outflow) and maximizes
the outflow of the source node. Let this value be P.

The max-flow problem is a linear program, which is unbounded
(also easy to verify that Slater's condition holds) and so by strong
duality we have that P = P*.

Furthermore, it holds that P* = D, even though the dual problem
of max-flow is not technically equal to the min-cut problem!



The Max-Flow Min-Cut Theorem

® |t should be utterly obvious (as Peter D. Lax puts it in his
Functional Analysis book) that P < D. We will now sketch why
P = D. Given a max-flow, we can with this algorithmic construct

the subset S yielding the minimum cut.



The Max-Flow Min-Cut Theorem

® |t should be utterly obvious (as Peter D. Lax puts it in his
Functional Analysis book) that P < D. We will now sketch why
P = D. Given a max-flow, we can with this algorithmic construct
the subset S yielding the minimum cut.

e Initialize S = {0}. While there exists u € S and v ¢ S such that
glul [v] == 1 and either flow[u] [v] < capl[u] [v] or
flow[v] [u]l > O, then include v in S.



The Max-Flow Min-Cut Theorem

® |t should be utterly obvious (as Peter D. Lax puts it in his
Functional Analysis book) that P < D. We will now sketch why
P = D. Given a max-flow, we can with this algorithmic construct
the subset S yielding the minimum cut.

e Initialize S = {0}. While there exists u € S and v ¢ S such that
glul [v] == 1 and either flow[u] [v] < capl[u] [v] or
flow[v] [u]l > O, then include v in S.

® We can now verify that the cut of S equals

cut(S) = Y caplil [j]

1€S,j¢S
= Z flow[i] [j] —flow[j] [i]
€5.IES  _caplil [1] =0

= flow(0)



The Max-Flow Min-Cut Theorem

It should be utterly obvious (as Peter D. Lax puts it in his
Functional Analysis book) that P < D. We will now sketch why
P = D. Given a max-flow, we can with this algorithmic construct
the subset S yielding the minimum cut.

Initialize S = {0}. While there exists uw € S and v ¢ S such that
glul [v] == 1 and either flow[u] [v] < capl[u] [v] or
flow[v] [u]l > O, then include v in S.

We can now verify that the cut of S equals

cut(S) = Y caplil [j]

1€S,j¢S

— Z flow[i] [j] — flow[j] [i]
€5,3#5  _caplal 31 =0

= flow(0)

What remains to show is that the algorithm actually yields a cut,
ie. that0 € Sandn & S.



The Max-Flow Min-Cut Theorem

It should be utterly obvious (as Peter D. Lax puts it in his
Functional Analysis book) that P < D. We will now sketch why
P = D. Given a max-flow, we can with this algorithmic construct
the subset S yielding the minimum cut.

Initialize S = {0}. While there exists uw € S and v ¢ S such that
glul [v] == 1 and either flow[u] [v] < capl[u] [v] or
flow[v] [u]l > O, then include v in S.

We can now verify that the cut of S equals

cut(S) = Y caplil [j]
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— Z flow[i] [j] — flow[j] [i]
€5,3#5  _caplal 31 =0

= flow(0)

What remains to show is that the algorithm actually yields a cut,
ie. that0 € Sandn & S.

Question: Can you construct efficiently the max-flow from the
min-cut?
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The standard algorithm to use is the preflow-push algorithm.

The algorithm keeps track a preflow at each node, which it
constantly tries to push out to neighbouring nodes with smaller
height. If this is not possible, it increases the height of the node.
The initialization is that the source node pushes out a maximum
saturating push and increases its fixed height to n.

| have implemented this algorithm, with parallelization, in C,
C++, Java, Rust and Clojure. Usually | take a shower after
thinking about this time in my life.

The time complexity is O(n?) for a graph that is complete.
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Setting all the weights to 1 gives the standard max-flow problem.

Suppose first that all weights are non-negative. There is
seemingly no easy way to extend the preflow-push algorithm to
this framework. But the (often) less efficient Edmonds-Karp
algorithm (with at best O(n*) complexity for the max-flow
problem) can easily be extended.

Furthermore, with some technical details, one could also handle
negative weights and non-symmetric capacities

(cap[il [j] # cap[j1[i]) in O(n*) complexity.
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A Matching of a graph G is a set of edges such that no two
edges share a node. We want to find a perfect matching, i.e. a
matching such that each node is an endpoint of an edge of the
matching. If a perfect matching does not exist (for instance if n
is odd) then we want to find a maximum cardinality matching.
If the graph is bipartite (a graph whose nodes that can be divided
into disjoint sets, such that each edge goes from one set to
another) then we can connect the graph with a source and a sink
and solve it as a max-flow problem in O(n?).

If the edges has an associated weight, we can solve the
assignment problem (a maximum cardinality matching with the
lowest total weight) as a min-cost-max-flow problem in O(n?).
Question: Can we utilize the bipartite structure in a better way?
Yes, in the unweighted case there is the Hopcroft—Karp algorithm
in O(n?®) and in the weighted case there is the Hungarian
algorithm in O(n?).

Question: What happens if the graph is not bipartite? We can
still solve the weighted problem in O(n*) using the Edmonds’
blossom algorithm.
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