Pragmatic Programming

Session 7 - Tries, Suffix Arrays, and Strings

Max Nilsson
December 7th

Hashing

There are many ways to hash a string s. The following formula

will hash a string in O(n) such that the hash of each contiguous
substring can be retrieved in O(1).

The idea is to to let P be some large prime, e.g. 1€9+9, and B

be some generator in the field Zp., e.g. 9973.

Then we can compute prefix-sums in some array:

11 hash[s.size()+1], using the following formula

hash[n+1] = Z B"'s[i] mod P.
=0

A hash of the substring s[a:b] (inclusive range) then equals

b

Z B%7%s[i] = hash[b+1] —hash[a] B*~ "' mod P.

1=a
The probability of two strings s, t having the same hashing over
all possible choices of the base B is approximately
max(s.size(), t.size())/P. This follows from a the
non-trivial Schwarz-Zippel lemma.

Trie (Prefix Tree)

A trie (coming from the word retrieval) is a tree which stores all
prefixes of some collection of strings over an alphabet 3.

Every node in the trie contains a flag bool end_of _word; and
|| pointers to other (child) nodes (initialized as null).

We can insert a string of size n

void insert(string);

by traversing the trie and creating new children when necessary,
in O(n). We can similarly search for a string in our trie in O(n).
The applications range from string completion algorithms to the
burst_sort algorithm, which is the fastest string sorting
algorithm (making efficient use of the cache).

The major downside of the trie is the memory size, which equals
O(n|X]) = O(n). There exists remedies for this issue, such as the
Bitwise trie and the Radix trie, which reduces the memory
usage but increases the insertion/searching to O(nlog |X]).

Suffix Array

This is an array sa which stores indices i of a string s which
represent suffixes s[i:n]. The important part is that these
indices are stored such that the suffixes are sorted.

The naive implementation (of simply sorting all suffixes) is
O(n?logn). But can we do better?

Yes of course, otherwise | would not be asking. We utilize the
structure of suffixes, i.e. we do not treat them as normal strings
but that they share a lot of characters. This can be done with
O(n) time and memory complexity! (Farach (1997))

For the easiest implementation, seel.

From a suffix array, one can in O(nlogn) construct a Longest
Common Prefix (LCP) array. The LCP array contains the
maximum length prefix match between two consecutive suffixes,
after they are sorted in a suffix array.

See coding example!

1Ge Nong, Sen Zhang and Wai Hong Chan. “Linear Suffix Array Construction
by Almost Pure Induced-Sorting”. In: 2009 Data Compression Conference. 2009,
pp. 193-202. por: 10.1109/DCC.2009.42.

https://doi.org/10.1109/DCC.2009.42

Suffix Tree

It combines the idea of a suffix array (stored indices of sorted
suffixes) in a trie.

The construction can be made again with Farach's algorithm in
O(n) time and memory.
It allows us to solve the following problems
® Find if a string t appears as a substring of s, where t, s have
sizes m, n respectively, in O(m). With a suffix array this can be
done, using a binary search, in O(mlogn).
® Find the longest common substring of t and s in O(n + m) time
complexity (used for regex matching).
A downside is the memory usage, which is again quite high.

If you have multiple strings {ti}le that you want to match in s
an efficient linear algorithm is the Aho-Corasick automaton which
is the basis of the orignal fgrep Unix command.

This Week

® Skim read chapter 14 in Sannemo? and chapter 14 in Laaksonen3.

® Solve half of this weeks 9 problems (truncated).

2Johan Sannemo. “Principles of Algorithmic Problem Solving”. In: Draft
version (2018).
3Antti Laaksonen. Guide to competitive programming. Springer, 2020.

