
Pragmatic Programming
Session 7 - Tries, Suffix Arrays, and Strings

Max Nilsson
December 7th

1

Hashing

• There are many ways to hash a string s. The following formula
will hash a string in O(n) such that the hash of each contiguous
substring can be retrieved in O(1).

• The idea is to to let P be some large prime, e.g. 1e9+9, and B
be some generator in the field ZP ., e.g. 9973.

• Then we can compute prefix-sums in some array:
ll hash[s.size()+1], using the following formula

hash[n+1] ≡
n∑

i=0

Bn−is[i] mod P.

• A hash of the substring s[a:b] (inclusive range) then equals

b∑
i=a

Bb−is[i] ≡ hash[b+1]− hash[a]Bb−a+1 mod P.

• The probability of two strings s, t having the same hashing over
all possible choices of the base B is approximately
max(s.size(), t.size())/P . This follows from a the
non-trivial Schwarz-Zippel lemma. 2

Trie (Prefix Tree)

• A trie (coming from the word retrieval) is a tree which stores all
prefixes of some collection of strings over an alphabet Σ.

• Every node in the trie contains a flag bool end of word; and
|Σ| pointers to other (child) nodes (initialized as null).

• We can insert a string of size n

void insert(string);

by traversing the trie and creating new children when necessary,
in O(n). We can similarly search for a string in our trie in O(n).

• The applications range from string completion algorithms to the
burst sort algorithm, which is the fastest string sorting
algorithm (making efficient use of the cache).

• The major downside of the trie is the memory size, which equals
O(n|Σ|) = O(n). There exists remedies for this issue, such as the
Bitwise trie and the Radix trie, which reduces the memory
usage but increases the insertion/searching to O(n log |Σ|).

3

Suffix Array

• This is an array sa which stores indices i of a string s which
represent suffixes s[i:n]. The important part is that these
indices are stored such that the suffixes are sorted.

• The naive implementation (of simply sorting all suffixes) is
O(n2 log n). But can we do better?

• Yes of course, otherwise I would not be asking. We utilize the
structure of suffixes, i.e. we do not treat them as normal strings
but that they share a lot of characters. This can be done with
O(n) time and memory complexity! (Farach (1997))

• For the easiest implementation, see1.
• From a suffix array, one can in O(n log n) construct a Longest

Common Prefix (LCP) array. The LCP array contains the
maximum length prefix match between two consecutive suffixes,
after they are sorted in a suffix array.

• See coding example!
1Ge Nong, Sen Zhang and Wai Hong Chan. “Linear Suffix Array Construction

by Almost Pure Induced-Sorting”. In: 2009 Data Compression Conference. 2009,
pp. 193–202. doi: 10.1109/DCC.2009.42.

4

https://doi.org/10.1109/DCC.2009.42

Suffix Tree

• It combines the idea of a suffix array (stored indices of sorted
suffixes) in a trie.

• The construction can be made again with Farach’s algorithm in
O(n) time and memory.

• It allows us to solve the following problems
• Find if a string t appears as a substring of s, where t, s have

sizes m,n respectively, in O(m). With a suffix array this can be
done, using a binary search, in O(m logn).

• Find the longest common substring of t and s in O(n+m) time
complexity (used for regex matching).

• A downside is the memory usage, which is again quite high.

• If you have multiple strings {ti}ki=1 that you want to match in s

an efficient linear algorithm is the Aho-Corasick automaton which
is the basis of the orignal fgrep Unix command.

5

This Week

• Skim read chapter 14 in Sannemo2 and chapter 14 in Laaksonen3.

• Solve half of this weeks 9 problems (truncated).

2Johan Sannemo. “Principles of Algorithmic Problem Solving”. In: Draft
version (2018).

3Antti Laaksonen. Guide to competitive programming. Springer, 2020.
6

