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A Strange Thing

• Let p be a prime and q its conjugate exponent in the sense that
p−1 + q−1 = 1 (coming from the fact that the dual of Lp is Lq).

• Consider the expression
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1

q
k

for some integer k ≥ 1.
• Extensive testing has shown that this expression is always a whole

number. Strange!
• The special case p = 2 gives the statement

k2 + k

2
∈ Z,

i.e., the parity of a number k is preserved after squaring it.
• One can simplify and get that
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q
k =

kp + (p− 1)k

p
∈ Z

is true if and only if p | kp − k which is Fermat’s little theorem.
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Counting Necklaces

• Let n, k ≥ 1 be integers. A (n, k)-necklace is intuitively a chain
of n beads, with each bead having one of k colors. Rotating a
(n, k)-necklace still gives the same necklace.

• Consider The Necklace Enumeration Problem: Given n and k,
how many (n, k)-necklaces are there?

• Let’s consider the special case (n, k) = (6, 2). Then we can list
the necklaces

000000, 111111

100000, 011111

110000, 101000, 100100, 001111, 010111, 011011

111000, 110100, 110010, 101010

and so in total we have 14 different necklaces.

• But the answer for (n, k) = (6, 5) is 2635.
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Group Actions

• Let X be the set of words of length n over an alphabet of size k
with size |X| = kn.

• Consider the cyclic group of order n, G := Cn
∼= Z/nZ.

• Since G is abelian we can let G act on X by rotations

G×X ∋ (g, x) 7→ gx

such that
1x = x, (gh)x = g(hx)

holds for all g, h ∈ G and x ∈ X.
• Recall the concept of an orbit of x

Gx := {gx | g ∈ G}.
Note that x ∈ Gx and if z ∈ Gx ∩Gy then

z = gx = g′y =⇒ x = g−1g′y

and Gx = Gy. Therefore, the orbits partition X.
• If we divide away G from X, X/G := {Gx | x ∈ X}, we can

formulate the necklace enumeration problem as determining
|X/G|. 4



The Orbit-Stabilizer Theorem

• The Orbits Gx ⊂ X are closely related to the stabilizer
subgroups of Gx ⊂ G defined by

Gx := {g ∈ G | gx = x}.
• Gx is trivially closed under inverses (g−1x = x ⇐⇒ x = gx) and

multiplication (g(hx) = gx = x) and so it is indeed a subgroup of
G.

• Now for some fixed x ∈ X define f : G → X by f(g) = gx. Then
by definition f(G) = Gx and f(g) = f(h) if and only if
g−1hx = x ⇐⇒ gGx = hGx.

• One can easily see that the left cosets of Gx,
G/Gx := {gGx | g ∈ G} partition G into equivalence classes of
equal amounts of elements. The function f above shows a
bijective relationship between the orbit Gx and the left cosets of
the stabilizer subgroup G/Gx, which implies that

|Gx| = |G/Gx| = |G|/|Gx|.
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Burnside’s Lemma

• We can see that

|X/G| =
∑

Gx∈X/G

1 =
∑

Gx∈X/G

∑
y∈Gx

1

|Gx|

=
∑
x∈X

1

|Gx|

• By the Orbit-Stabilizer Theorem we have that

|G||X/G| =
∑
x∈X

|Gx|

= |{(g, x) ∈ G×X | gx = x}|

=
∑
g∈G

|{x ∈ X | gx = x}.|

• The last expression is defined as fixed point set Xg ⊂ X of
some g ∈ G. This is Burnside’s Lemma

|X/G| = 1

|G|
∑
g∈G

|Xg|.
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The Answer to Counting Necklaces

• Burnside’s Lemma holds in general for any set X, group G with a
group action G×X → X. Let us now instead focus when X is
the set of words of length n with alphabet size k and G = Cn.

• Since |G| = n, all that remains is computing the sizes of the fixed
point sets Xg.

• Let gm ∈ Cn be associated with m ∈ Z/nZ. Since Cn is
generated by g1 = (1 2 . . . n), we have that Xgm must consist of
elements which have equal colors on each of its cm cycles, i.e.,

|Xg| = kc(g).

• It follows cm = n/km where km is the cycle lengths associated
with gm, that is the smallest positive integer such that

cmm ≡ 0 mod n.

• In other words, km is the smallest positive integer that contains
all the prime factors of n except those already appearing in m:

km =
n

gcd(n,m)
=⇒ cm = gcd(n,m) =⇒ |X/G| = 1

n

n∑
k=1

kgcd(n,k)
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Some Special Cases

• When n = 6 we get the expression

|X/G| = k + k2 + k3 + k2 + k + k6
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we get that k = 2 gives 14 and k = 5 gives 2635.
• In general, suppose we want to answer the necklace problem

modulo some large prime P when n, k ≤ 1e5. Then we need to
compute the multiplicative inverse n−1 in Z/PZ in O(logP ),
pre-compute all values ke modulo P in O(n) and compute all
greatest common divisors in naively O(n log n), but can be
optimized to O(n). In total, we can answer the modulo necklace
problem in O(n).

• Note that when n = p is prime, then
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p

p∑
k=1

kgcd(p,k) =
1

p
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kp +
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k=1

k

)
=

kp + (p− 1)k

p
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which trivially lies in Z. Therefore, we have proved Fermat’s little
theorem by counting necklaces. 8



The Last Slide
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