Pragmatic Programming
Session 10 - Topological Sorting and Treaps

Max Nilsson
February 2nd

Help Max Nilsson Finish His Screenplay!

® Max Nilsson has finally finished writing all of his scenes of his
fantasy screenplay.

® All scenes have been numbered n € [0, 10°] and all he needs to do
is to fit them together into one big chronological document.

® Max Nilsson has a list of ~ 10° links of the form
u->v

which indicates that scene u must come before scene v in the
screenplay (for instance, Kahn the king of termites must be
introduced before he is betrayed by the termites, but the betrayal
should of course not occur before he meets the wizard of
thunder).

® The solution needs not to be unique and we know that the links
does not form any cycles.

® The list of links can be found in the GitLab (when unzipped it is
14.5 MB). Please help him solve his problem.

Treap

A blend of the binary search tree and the heap. Each node in
the tree contains a key (sorted as in a binary search tree) and a
random priority (structured as in a heap). The resulting shape is
a randomized binary search tree with high probability of
logarithmic height.

Searching is the same as in a binary search tree in O(logn), but
insertion/deletion is different.

Insertion: Create a new node with assigned key and random
priority, and search in the treap for it. If it does not exist, insert
it. While there is a contradiction of the heap structure, perform
the standard right/left shifts of binary search trees until we reach
the root. This is done in O(logn).

Deletion: Change the priority of the node to be deleted to be
—o0. Then we can perform suitable shifts until the node is a leaf
of the tree, and then we can delete it. In total O(logn).

Why Do We Care?

There is a nice geometric interpretation of treaps, which motivate
that the shape of a treap forgets about its history. What | mean
by this is that inserting items in different orders always result in
the same balanced tree shape (as long as the priorities are
deterministic), unlike an AVL/RedBlack tree. This could have
applications in security software engineering.

A defining characteristic of a treap is that it easily solves the
problem of a global split operation: given a key x and a treap ¢
give me two smaller treaps t1,to such that

keys(t1) < < keys(tz).

This is messy in a normal balanced binary search tree and
impossible (?) to solve in O(logn). With a treap it is one line of
code ...

. and that is to insert a node with key x and priority co.
® With similar ideas we can perform a union (U), intersection (N) of
treaps (which can represent sets) giving efficient set operations.
If two sets A, B with sizes n,m (m < n) respectively, then
representing them with treaps computes AN B,AUB, A\ B in
O(mlog).

Commercial for my Upcoming Study Circle

Week 1 Binary heap and Treap

Week 2 Binomial heap and Fibonacci heap
Week 3 Min-max heap and Brodal heap
Week 4 || Randomized meldable heap and Leaf heap
Week 5 Weak heap and Radix heap

Week 6 Symmetry heap and Soft heap
Week 7 Leftist heap and Skew heap

Week 8 d-ary heap and Pairing heap

Week 9 Beap and K-D Heap

Week 10 2-3 heap and B-heap

It will be 3 hp and go during the summer.
(Bonus challenge: find the heap above that | made up)

This Week

® Skim read section 7.4 and 15.3 in Laaksonen!.

® Solve half of this weeks 8 problems (truncated).

LAntti Laaksonen. Guide to competitive programming. Springer, 2020.

