Pragmatic Programming

Session 12 - The Traveling Salesman in R?

Max Nilsson
February 16th



The Euclidean Traveling Salesman

The general Traveling Salesman Problem is Given a list of cities and
the distances between each pair of cities, what is the shortest possible
route that visits each city exactly once and returns to the origin city?

® |n other words, this is the weighted Hamiltonian cycle problem. It
is in NP.

® We will consider n cities in R2. The important properties is that
the graph is complete and that the distances between the
distances between the nodes satisfy the triangle inequality.

® The solution cycle will form a simple polygon, i.e., it will have no
self-intersections (except the case when n = 27).

® For some collection of edges E’ let d(E’) represent the total
distance of all edges in E’. Let the cycle C be the solution to the
problem.

® We will look at one handsome approximation and one beautiful
approximation.



The Salesman’s Lament - Minimum Spanning Trees

Before the salesman will begin his venture he will have to pack his
knapsack. The cursed items of old reminds him of late evenings
writing slides to some outdated course in pragmatic programming.

® Recall from lecture 2 that a minimum spanning tree is found by
sorting the edges, iterate through them and perform union-find by
rank. The bottleneck is the sorting, which in our case gives
O(n?logn).

® In a Euclidean graph, such as this one, there is a better way. First
perform Delaunay triangulation (with triangles being "small” in
the sense that their respective circumcircles do not contain any
nodes in their interiors). With a divide and conquer technique this
can be done in O(nlogn). This reduced the number of edges to
O(n) and the final spanning tree is actually minimum. In total
O(nlogn).

® |et T be this minimum spanning tree. By the triangular inequality

d(C) < 2d(T) < 2d(C) (Handsome)

since if we remove one edge from C' we get a spanning tree. We
can also easily construct a cycle within this 2-bound.



The Salesman’s Mistake - Euler Cycles

If only the spanning tree were traversable, like some Eulerian cycle,
passing through its edges exactly once. This reminded the Salesman of
a mistake in lecture 4. He daydreams of correcting it:

® Proposition: If every vertex of a connected graph G has even
degree, then it contains a Euler cycle.

® Proof: Perform a depth first search from any root node which
terminates when it reaches the root node. This gives a cycle C'
only passing through edges at most once (called a circuit).

e |f we remove C' from the edges of the graph, we will be left with
possibly disconnected components, but all have even degrees. By
induction, these components all have a Euler cycle.

® Now form a final Euler cycle of G by inserting Euler cycles of the
sub-components into C' the first time a vertex of that
sub-component is visited in C'. End of daydream and proof.

® This proof in fact gives a recursive algorithm in O(m), where m
is the number of edges, called Hierholzer's algorithm (1873).



The Salesman’s Promise - Edmund’s Blossom

Unfortunately, a Euler cycle cannot be found in T, since it contains
some nodes with odd degrees. By the Handshake Lemma, there are an
even amount of such nodes. Given the complete induced subgraph
from these nodes, the Salesman contemplates its minimum weight
maximum matching. The main idea is the Blossom Algorithm, which
was promised in lecture 9.

® First consider the unweighted case. Let M be a matching of a
graph G.

® A node is exposed if no edge of M is incident with it. A path is
an alternating path if its edges are alternately not in M and in
M (or in M and not in M). An augmenting path is an
alternating path that starts and ends at two distinct exposed
nodes.

® One can show that a matching M is maximum if and only if there
exists no augmenting paths with respect to M.

® Edmund'’s Blossom algorithm repeatedly augments the matching
(i.e. switching the matching in an augment path). To make this
efficient, the graph is contracted and lifted with the help of
blossoms.



Blossoms

A blossom is a cycle in G consisting of 2k + 1 edges of which exactly k
belong to M, and where one of the vertices of the cycle has an
alternating path of even length from it to an exposed vertex.

e Define the contracted graph G’ as the graph obtained from G by
contracting every edge of the blossom, and define the contracted
matching M’ as the matching of G’ corresponding to M.

® Since the blossom has cycle of odd length, one can show that G’
has an augmenting path if and only if G has an augmenting path.
If the augmenting path goes through a contracted blossom, then
one of its two directions yields an alternating path.

® This contraction creates a recursive call to finding an augmenting
path to G’ which we can then lift up to G and perform
augmentation.

® The details are quite messy, but this can be extended to the
weighted case (similar to how it is done in network flow) and in
the end you get a O(n*) algorithm which Gabow (1974) improved
to O(n?).



The Salesman’s Conclusion - Christofide’s Algorithm

Let us recap the algorithm so far and give the final step. We are given
a complete Euclidean graph G and we want to bound the solution C.

1.

Ok wn

Find the minimum spanning tree T of G in O(nlogn)

Find the nodes U of odd degrees in O(n)

Compute the minimum weight matching M of U in O(n?)

Find a Euler cycle of T'U M with Hierholzer's in O(n)

Finally: remove duplicate nodes from the Euler cycle to create a
Hamiltonian cycle C' of G in O(n)

First note that d(C) < d(C) = d(T) + d(M) < d(C) + d(M). So
it remains to bound M.

The trick is to consider the cycle C' as it passes over the nodes U.
It does so in order uy, ..., u, which induces two matchings

M1 = {(ul,uQ), (U3,U4) ‘e }, MQ = {(UQ,Ug), (U4,u5) NN }

® We get 2d(M) < d(My) + d(Mz) < d(C) and so

d(C) < d(C) < %d(C). (Beautiful)



Improvements to the Euclidean Traveling Salesman

® In 2020, Karlin, Klein, and Gharan managed to improve the 1.5
approximation in general to a

1.49999999999999999999999999999999999 approximation.

® |f the problem is embedded in R? then Arora and Mitchell gave in
2010 a polynomial-time approximation scheme with bound
14 ¢! for any ¢ > 0 with time complexity

@) (n(log n)o(c‘/a)dfl) .

® They were awarded the Godel Prize.



This and Next Week

This week's problem set will be the last one.

There will be 12 (one for each session) randomly picked problems
between 3 and 6.5 in Kattis difficulty. | will not sort the problems
this week.

There will be a 13th and final session next week 13:15-15:00.
Come prepared for something completely different.

There will also be a 13th problem on this final problem set. It is
optional and there is really no way to "solve" it.

If you solve 6 out of the 12 random problems and have fulfilled
each week’s requirement, contact me and | will let Pontus know
after the final session.



