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A Strange Thing

Let p be a prime and q its conjugate exponent in the sense that
p~ 1+ ¢! =1 (coming from the fact that the dual of L? is L9).
Consider the expression
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for some integer k > 1.
Extensive testing has shown that this expression is always a whole
number. Strange!
The special case p = 2 gives the statement
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i.e., the parity of a number k is preserved after squaring it.
One can simplify and get that
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is true if and only if p | kP — k which is Fermat's little theorem.
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Counting Necklaces

Let n,k > 1 be integers. A (n, k)-necklace is intuitively a chain
of n beads, with each bead having one of k colors. Rotating a
(n, k)-necklace still gives the same necklace.

Consider The Necklace Enumeration Problem: Given n and k,
how many (n, k)-necklaces are there?

Let's consider the special case (n, k) = (6,2). Then we can list
the necklaces

000000, 111111
100000, 011111
110000, 101000, 100100, 001111,010111, 011011
111000, 110100, 110010, 101010

and so in total we have 14 different necklaces.
But the answer for (n, k) = (6,5) is 2635.



Group Actions

Let X be the set of words of length n over an alphabet of size k
with size | X| = k™.
e Consider the cyclic group of order n, G :== C,, =2 Z/nZ.
® Since G is abelian we can let G act on X by rotations
GxX>(g,z)— gz
such that
le =z, (gh)z=g(hz)
holds for all g,h € G and z € X.
Recall the concept of an orbit of =
Gz = {gx | g € G}.
Note that x € Gz and if z € Gz N Gy then
p=gr=g'y = v=g"'g"y

and Gz = Gy. Therefore, the orbits partition X.

If we divide away G from X, X/G := {Gz | x € X}, we can
formulate the necklace enumeration problem as determining
| X/G.



The Orbit-Stabilizer Theorem

The Orbits Gx C X are closely related to the stabilizer
subgroups of G, C G defined by

Gy ={g€G|gr=uz}.

G, is trivially closed under inverses (g7 'z = x <= x = gr) and

multiplication (g(hz) = gz = ) and so it is indeed a subgroup of
G.

Now for some fixed € X define f: G — X by f(g) = gz. Then
by definition f(G) = G, and f(g) = f(h) if and only if

g lhr =2 < ¢G, = hG,.

One can easily see that the left cosets of G,

G/Gy = {gG, | g € G} partition G into equivalence classes of
equal amounts of elements. The function f above shows a
bijective relationship between the orbit Gz and the left cosets of
the stabilizer subgroup G/G,, which implies that

|Gz| = |G/G.| = |G|/|Gyl.



Burnside’s Lemma

® \We can see that

X/Gl= 3 1= 3. > i

GzeX/G GwEX/G UEGw
B a;( |Gm|
® By the Orbit-Stabilizer Theorem we have that

GIIX/Gl =) |G.l

zeX
=H{(g,2) € G x X | gz =z}
=Y {reX|gr=u}
geG

® The last expression is defined as fixed point set X9 C X of
some g € G. This is Burnside's Lemma

X/61 = g 21X

geqG



The Answer to Counting Necklaces

Burnside's Lemma holds in general for any set X, group G with a
group action G x X — X. Let us now instead focus when X is
the set of words of length n with alphabet size & and G = C,,.
Since |G| = n, all that remains is computing the sizes of the fixed
point sets X9.

Let g,, € C,, be associated with m € Z/nZ. Since C,, is
generated by g1 = (1 2...n), we have that X9 must consist of
elements which have equal colors on each of its ¢, cycles, i.e.,

|X9| = k9,

It follows ¢, = n/k,, where k,, is the cycle lengths associated
with g¢,,, that is the smallest positive integer such that

cmm = 0 mod n.

In other words, k,, is the smallest positive integer that contains
all the prime factors of n except those already appearing in m:
n

ky =

1 n
= — = = d —t X G = — kng(n’k)
ged(n, m) ¢m = ged(n, m) X/6] n kZ:1
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Some Special Cases

® When n = 6 we get the expression

k+k*+ k> 4+ k> + k+k°
6

we get that & = 2 gives 14 and k = 5 gives 2635.

® |n general, suppose we want to answer the necklace problem
modulo some large prime P when n,k < 1e5. Then we need to
compute the multiplicative inverse n=! in Z/PZ in O(log P),
pre-compute all values k¢ modulo P in O(n) and compute all
greatest common divisors in naively O(nlogn), but can be
optimized to O(n). In total, we can answer the modulo necklace
problem in O(n).

® Note that when n = p is prime, then

|X/G| =

p

1 P 1 1 1
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k=1

which trivially lies in Z. Therefore, we have proved Fermat's little
theorem by counting necklaces.
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