Skip to content
Snippets Groups Projects
Select Git revision
  • 3978f22a96c1d0243ab9da85e42d75358a4136ce
  • master default
  • labcomm2014
  • labcomm2006
  • python_sig_hash
  • typedefs
  • anders.blomdell
  • typeref
  • pragma
  • compiler-refactoring
  • labcomm2013
  • v2014.6
  • v2015.0
  • v2014.5
  • v2014.4
  • v2006.0
  • v2014.3
  • v2014.2
  • v2014.1
  • v2014.0
  • v2013.0
21 results

Makefile

Blame
  • analyze_adaptive_width.jl 1.86 KiB
    using ValueHistories, JLD, DataFrames, DataFramesMeta, ExperimentalAnalysis
    using Plots
    const dir         = "adaptive_width_experiments"
    const N_burnin    = 2000
    
    function read_results()
        datamatrix = map(readdir(dir)) do file
            data = load(joinpath(dir,file))
            loss_initial_min_before = minimum(data["vh.values"][1:N_burnin])
            loss_initial_min_after = minimum(data["vh.values"][N_burnin+1:end])
            loss_initial_max_after = maximum(data["vh.values"][N_burnin+1:end])
            loss_second_min = minimum(data["vh2.values"])
            loss_second_max = maximum(data["vh2.values"])
            stepsize,gate_ratio,gate12,gate_cost,weight_cost = log10(data["stepsize"]),data["gate_ratio"],data["gate12"],log10(data["gate_cost"]),log10(data["weight_cost"])
            Float64[loss_initial_min_before,loss_initial_min_after,loss_initial_max_after,loss_second_min,loss_second_max,stepsize,gate_ratio,gate12,gate_cost,weight_cost]
        end
        datamatrix = hcat(datamatrix...)
        datamatrix = [datamatrix[i,:] for i in 1:size(datamatrix,1)]
        datamatrix = convert(Vector{Any},datamatrix)
        colnames = Symbol.(["loss_initial_min_before","loss_initial_min_after","loss_initial_max_after","loss_second_min","loss_second_max","stepsize","gate_ratio","gate12","gate_cost","weight_cost"])
        df = DataFrame(datamatrix, colnames)
        pool!(df,:gate12)
        df
    end
    
    df = read_results()
    # df = @where(df, :weight_cost .<= -3)
    df = @transform(df, log_loss_initial_min_before = log10(:loss_initial_min_before), log_loss_initial_max_after = log10(:loss_initial_max_after))
    fig = scattermatrix(df, log_loss_initial_min_before + log_loss_initial_max_after ~ stepsize + gate_ratio + gate_cost + weight_cost, reglines=true)
    
    # model = lm(loss_initial_max_after ~ stepsize + gate12 + gate_ratio*gate_cost + loss_initial_min_before, df)
    # using StatPlots; cornerplot(hcat(df.columns...), lab=keys(df.colindex))