Skip to content
Snippets Groups Projects
Select Git revision
  • 40f9982f688f0e95e689c71f630980f00537b0be
  • master default protected
  • mattias
  • sobolfast
4 results

tests.jl

Blame
  • run_many_cycling.m 1.10 KiB
    %"monteCarlo" example
    
    %% Load data
    disp('Loads data')
    load('cycling_input_data');
    
    %% Load filter settings
    disp('Loads settings')
    settings=get_settings_cycling();
    
    %vector of RGB colors for plotting for the different P references
    color=[[0.7,0.0,0.0];[0.0,0.7,0.0];[0.7,0.0,0.7];[0.0,0.0,0.7];[0.0,0.7,0.7];[0.7,0.7,0.0]];
    %vector of refrences for P
    P_treshold=[4.0,5.0,6.0,8.0,10.0,12.0];
    %nubmer of runs per each P
    n_run=30;
    %allocate memory for output
    energy=zeros(n_run,length(P_treshold));
    error=zeros(n_run,length(P_treshold));
    
    for j=1:length(P_treshold)
        %set P reference
        settings.P_treshold=P_treshold(j);
        %run simulations
        for k=1:n_run
            %% Run the GNSS-aided INS
            disp('Running the GNSS-aided INS')
            P_treshold(j)
            k
            out_data=GPSaidedINS_cycling(in_data,settings);
            energy(k,j)=out_data.energy;
            error(k,j)=out_data.error;
        end
    end
    
    
    %plot data
    figure
    hold on
    xlabel('energy')
    ylabel('error')
    title('cycling energy accuracy tracking trade-off')
    grid
    
    for j=1:length(P_treshold)
        scatter(energy(:,j), error(:,j),20,color(j,:),'o','filled')
    end