Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
R
reinforcementlearning
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Fredrik Bagge Carlson
reinforcementlearning
Commits
49534e58
Commit
49534e58
authored
7 years ago
by
Fredrik Bagge Carlson
Browse files
Options
Downloads
Plain Diff
Merge branch 'master' of gitlab.control.lth.se:cont-frb/reinforcementlearning
parents
db637b81
82c1290b
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
pf_vec.jl
+89
-45
89 additions, 45 deletions
pf_vec.jl
with
89 additions
and
45 deletions
pf_vec.jl
+
89
−
45
View file @
49534e58
using
StatsBase
,
Plots
,
Distributions
,
StaticArrays
using
StatsBase
,
Plots
,
Distributions
,
StaticArrays
,
Base
.
Test
,
TimerOutputs
function
init_pf
(
N
,
p0
)
function
init_pf
{
T
}(
x0
::
AbstractVector
{
T
},
N
,
p0
)
xprev
=
rand
(
p0
,
N
)
xprev
=
Vector
{
SVector
{
length
(
x0
),
T
}}([
x0
.+
rand
(
p0
)
for
n
=
1
:
N
]
)
x
=
similar
(
x
)
x
=
similar
(
x
prev
)
w
=
fill
(
log
(
1
/
N
),
N
)
w
=
fill
(
log
(
1
/
N
),
N
)
x
,
xprev
,
w
x
,
xprev
,
w
end
end
...
@@ -22,6 +22,8 @@ function pf!(x, xprev, w, u, y, g, f)
...
@@ -22,6 +22,8 @@ function pf!(x, xprev, w, u, y, g, f)
x
x
end
end
shouldresample
(
w
)
=
rand
()
<
0.5
function
weigthed_mean
(
x
,
w
)
function
weigthed_mean
(
x
,
w
)
xh
=
zeros
(
size
(
x
[
1
]))
xh
=
zeros
(
size
(
x
[
1
]))
@inbounds
@simd
for
i
=
eachindex
(
x
)
@inbounds
@simd
for
i
=
eachindex
(
x
)
...
@@ -30,15 +32,28 @@ function weigthed_mean(x,w)
...
@@ -30,15 +32,28 @@ function weigthed_mean(x,w)
return
xh
return
xh
end
end
@inline
logsumexp!
(
w
)
=
w
.-=
log
(
sum
(
exp
,
w
))
@testset
"weigthed_mean"
begin
# function logsumexp!(w)
x
=
[
randn
(
3
)
for
i
=
1
:
10000
]
# offset = maximum(wT)
w
=
ones
(
10000
)
|>
logsumexp!
# normConstant = 0.0
@test
sum
(
abs
,
weigthed_mean
(
x
,
w
))
<
0.05
# for i = 1:N
end
# normConstant += exp(w[i,t]-offset)
# end
# @inline logsumexp!(w) = w .-= log(sum(exp, w))
# wT .-= log(normConstant) + offset
function
logsumexp!
(
w
)
# end
offset
=
maximum
(
w
)
normConstant
=
zero
(
eltype
(
w
))
for
i
=
eachindex
(
w
)
normConstant
+=
exp
(
w
[
i
]
-
offset
)
end
w
.-=
log
(
normConstant
)
+
offset
end
@testset
"logsumexp"
begin
w
=
randn
(
10
)
wc
=
copy
(
w
)
@test
logsumexp!
(
w
)
≈
wc
.-
log
(
sum
(
exp
,
wc
))
@test
logsumexp!
(
ones
(
10
))
≈
fill
(
log
(
1
/
10
),
10
)
end
function
resample
(
w
)
function
resample
(
w
)
N
=
length
(
w
)
N
=
length
(
w
)
...
@@ -48,8 +63,7 @@ function resample(w)
...
@@ -48,8 +63,7 @@ function resample(w)
for
i
=
2
:
N
for
i
=
2
:
N
bins
[
i
]
=
bins
[
i
-
1
]
+
exp
(
w
[
i
])
bins
[
i
]
=
bins
[
i
-
1
]
+
exp
(
w
[
i
])
end
end
s
=
(
rand
()
/
N
+
0
)
:
1
/
N
:
bins
[
end
]
s
=
(
rand
()
/
N
)
:
(
1
/
N
)
:
bins
[
end
]
bo
=
1
bo
=
1
for
i
=
1
:
N
for
i
=
1
:
N
@inbounds
for
b
=
bo
:
N
@inbounds
for
b
=
bo
:
N
...
@@ -63,39 +77,56 @@ function resample(w)
...
@@ -63,39 +77,56 @@ function resample(w)
return
j
return
j
end
end
const
pg
=
Distributions
.
Normal
(
0
,
1.0
)
@testset
"resample"
begin
const
pf
=
Distributions
.
Normal
(
0
,
1.0
)
w
=
logsumexp!
(
ones
(
10
))
const
p0
=
Distributions
.
Normal
(
0
,
2.0
)
@test
resample
(
w
)
≈
1
:
10
@test
[
1.
,
1
,
1
,
2
,
2
,
2
,
3
,
3
,
3
]
|>
logsumexp!
|>
resample
|>
sum
>=
56
@test
length
(
resample
(
w
))
==
length
(
w
)
for
i
=
1
:
10000
j
=
randn
(
100
)
|>
logsumexp!
|>
resample
@test
maximum
(
j
)
<=
100
@test
minimum
(
j
)
>=
1
end
end
n
=
7
n
=
2
m
=
2
m
=
2
p
=
2
p
=
2
const
pg
=
Distributions
.
MvNormal
(
p
,
1.0
)
const
pf
=
Distributions
.
MvNormal
(
n
,
1.0
)
const
p0
=
Distributions
.
MvNormal
(
n
,
2.0
)
T
=
randn
(
n
,
n
)
T
=
randn
(
n
,
n
)
const
A
=
SMatrix
{
n
,
n
}(
T
*
diagm
(
linspace
(
0.5
,
0.99
,
n
))
/
T
)
const
A
=
SMatrix
{
n
,
n
}(
T
*
diagm
(
linspace
(
0.5
,
0.99
,
n
))
/
T
)
const
B
=
@SMatrix
randn
(
n
,
m
)
const
B
=
@SMatrix
randn
(
n
,
m
)
const
C
=
@SMatrix
randn
(
p
,
n
)
const
C
=
@SMatrix
randn
(
p
,
n
)
function
f
(
x
,
xp
,
u
,
j
)
function
f
(
x
,
xp
,
u
,
j
)
Bu
=
B
*
u
@inbounds
for
i
=
eachindex
(
x
)
@inbounds
for
i
=
eachindex
(
x
)
x
[
i
]
=
A
*
xp
[
j
[
i
]]
+
B
*
u
+
rand
(
pf
)
x
[
i
]
=
A
*
xp
[
j
[
i
]]
+
Bu
+
rand
(
pf
)
end
end
x
end
end
function
f
(
x
,
u
)
function
f
(
x
,
u
)
x
[
i
]
=
A
*
xp
[
j
[
i
]]
+
B
*
u
+
rand
(
pf
)
Bu
=
B
*
u
@inbounds
for
i
=
eachindex
(
x
)
x
[
i
]
=
A
*
x
[
i
]
.+
Bu
.+
rand
(
pf
)
end
x
end
end
function
g
(
w
,
y
::
Float64
,
x
)
function
g
(
w
,
y
,
x
)
@inbounds
for
i
=
1
:
length
(
w
)
@inbounds
for
i
=
1
:
length
(
w
)
w
[
i
]
-=
logpdf
(
pg
,
y
-
C
*
x
[
i
])
w
[
i
]
+=
logpdf
(
pg
,
Vector
(
y
-
C
*
x
[
i
]))
w
[
i
]
=
ifelse
(
w
[
i
]
<
-
1000
,
-
1000
,
w
[
i
])
end
end
w
end
end
rms
(
x
)
=
sqrt
(
mean
(
abs2
,
x
))
function
run_test
()
function
run_test
()
particle_count
=
[
5
10
20
50
100
200
500
1000
10_000
]
particle_count
=
[
5
,
10
,
20
,
50
,
100
,
200
,
500
,
1000
,
10_000
]
time_steps
=
[
20
,
50
,
100
,
200
]
time_steps
=
[
20
,
50
,
100
,
200
]
RMSE
=
zeros
(
length
(
particle_count
),
length
(
time_steps
))
# Store the RMS errors
RMSE
=
zeros
(
length
(
particle_count
),
length
(
time_steps
))
# Store the RMS errors
propagated_particles
=
0
propagated_particles
=
0
...
@@ -103,20 +134,19 @@ function run_test()
...
@@ -103,20 +134,19 @@ function run_test()
for
(
Ni
,
N
)
in
enumerate
(
particle_count
)
for
(
Ni
,
N
)
in
enumerate
(
particle_count
)
montecarlo_runs
=
maximum
(
particle_count
)
*
maximum
(
time_steps
)
/
T
/
N
montecarlo_runs
=
maximum
(
particle_count
)
*
maximum
(
time_steps
)
/
T
/
N
# montecarlo_runs = 1
# montecarlo_runs = 1
xp
=
Array
{
Float64
}(
n
,
N
,
T
)
x
=
zeros
(
n
,
T
)
w
=
Array
{
Float64
}(
n
,
N
,
T
)
y
=
zeros
(
p
,
T
)
x
=
Array
{
Float64
}(
n
,
T
)
y
=
Array
{
Float64
}(
p
,
T
)
E
=
sum
(
1
:
montecarlo_runs
)
do
xh
,
xhprev
,
w
=
init_pf
(
N
,
p0
)
E
=
sum
(
1
:
montecarlo_runs
)
do
mc_run
u
=
randn
(
m
,
T
)
u
=
randn
(
m
,
T
)
x
[
:
,
1
]
=
rand
(
p0
)
x
[
:
,
1
]
=
rand
(
p0
)
y
[
:
,
1
]
=
C
*
x
[
:
,
1
]
+
rand
(
pg
)
y
[
:
,
1
]
=
C
*
x
[
:
,
1
]
+
rand
(
pg
)
xh
,
xhprev
,
w
=
init_pf
(
x
[
:
,
1
],
N
,
p0
)
error
=
0.0
error
=
0.0
@inbounds
for
t
=
1
:
T
-
1
@timeit
"pf"
@inbounds
for
t
=
1
:
T
-
1
x
[
:
,
t
+
1
]
=
f
(
x
[
:
,
t
],
u
[
:
,
T
])
+
rand
(
pf
)
# plot_particles2(xh,w,y,x,t)
x
[
:
,
t
+
1
]
=
f
([
x
[
:
,
t
]],
u
[
:
,
t
])[]
y
[
:
,
t
+
1
]
=
C
*
x
[
:
,
t
+
1
]
+
rand
(
pg
)
y
[
:
,
t
+
1
]
=
C
*
x
[
:
,
t
+
1
]
+
rand
(
pg
)
pf!
(
xh
,
xhprev
,
w
,
u
[
:
,
t
],
y
[
:
,
t
],
g
,
f
)
pf!
(
xh
,
xhprev
,
w
,
u
[
:
,
t
],
y
[
:
,
t
],
g
,
f
)
error
+=
sum
(
abs2
,
x
[
:
,
t
]
-
weigthed_mean
(
xh
,
w
))
error
+=
sum
(
abs2
,
x
[
:
,
t
]
-
weigthed_mean
(
xh
,
w
))
...
@@ -136,10 +166,8 @@ function run_test()
...
@@ -136,10 +166,8 @@ function run_test()
return
RMSE
return
RMSE
end
end
@time
pf!
(
eye
(
4
),
eye
(
4
),
ones
(
4
),
4
,
g
,
f
,
σw
)
# @enter pf!(zeros(4),zeros(4), ones(4), ones(4), ones(4), g, f)
gc
()
reset_timer!
()
Profile
.
clear
()
@time
RMSE
=
run_test
()
@time
RMSE
=
run_test
()
# Profile.print()
# Profile.print()
...
@@ -148,8 +176,24 @@ function plotting(RMSE)
...
@@ -148,8 +176,24 @@ function plotting(RMSE)
particle_count
=
[
5
,
10
,
20
,
50
,
100
,
200
,
500
,
1000
,
10_000
]
particle_count
=
[
5
,
10
,
20
,
50
,
100
,
200
,
500
,
1000
,
10_000
]
nT
=
length
(
time_steps
)
nT
=
length
(
time_steps
)
leg
=
reshape
([
"
$
(time_steps[i]) time steps"
for
i
=
1
:
nT
],
1
,
:
)
leg
=
reshape
([
"
$
(time_steps[i]) time steps"
for
i
=
1
:
nT
],
1
,
:
)
plot
(
particle_count
,
RMSE
,
xscale
=:
log10
,
ylabel
=
"RMS errors"
,
xlabel
=
" Number of particles"
,
lab
=
leg
)
plot
(
particle_count
,
RMSE
,
xscale
=:
log10
,
ylabel
=
"RMS errors"
,
xlabel
=
" Number of particles"
,
lab
=
leg
)
end
end
plotting
(
RMSE
)
plotting
(
RMSE
)
function
plot_particles
(
x
,
w
,
y
,
xt
)
xa
=
reinterpret
(
Float64
,
x
,
(
length
(
x
[
1
]),
length
(
x
)))
scatter
(
xa
[
1
,
:
],
xa
[
2
,
:
],
title
=
"Particles"
,
reuse
=
true
,
xlims
=
(
-
15
,
15
),
ylims
=
(
-
15
,
15
),
grid
=
false
,
size
=
(
1000
,
1000
))
scatter!
([
y
[
1
]],
[
y
[
2
]],
m
=
(
:
red
,
5
))
scatter!
([
xt
[
1
]],
[
xt
[
2
]],
m
=
(
:
green
,
5
))
sleep
(
0.2
)
end
function
plot_particles2
(
x
,
w
,
y
,
xt
,
t
)
xa
=
reinterpret
(
Float64
,
x
,
(
length
(
x
[
1
]),
length
(
x
)))
plot
(
xt
'
,
title
=
"Particles"
,
reuse
=
true
,
grid
=
false
,
size
=
(
1000
,
1000
),
layout
=
(
2
,
1
),
ylims
=
(
-
15
,
15
))
plot!
(
y
'
,
l
=
(
:
red
,
2
))
scatter!
(
t
*
ones
(
size
(
xa
,
2
)),
xa
[
1
,
:
],
subplot
=
1
)
scatter!
(
t
*
ones
(
size
(
xa
,
2
)),
xa
[
2
,
:
],
subplot
=
2
)
sleep
(
0.2
)
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment