Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
D
deep_learning_study_circle_2016
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Martin Karlsson
deep_learning_study_circle_2016
Commits
5a824398
Commit
5a824398
authored
8 years ago
by
GIngesson
Browse files
Options
Downloads
Patches
Plain Diff
Upload new file
parent
53f435f2
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
hw3_convolutional_networks/Gabriel/05_convolutional_net.py
+82
-0
82 additions, 0 deletions
hw3_convolutional_networks/Gabriel/05_convolutional_net.py
with
82 additions
and
0 deletions
hw3_convolutional_networks/Gabriel/05_convolutional_net.py
0 → 100644
+
82
−
0
View file @
5a824398
#!/usr/bin/env python
import
tensorflow
as
tf
import
numpy
as
np
from
tensorflow.examples.tutorials.mnist
import
input_data
batch_size
=
128
test_size
=
5000
def
init_weights
(
shape
):
return
tf
.
Variable
(
tf
.
random_normal
(
shape
,
stddev
=
0.01
))
def
model
(
X
,
w
,
w2
,
w3
,
w4
,
w_o
,
p_keep_conv
,
p_keep_hidden
):
l1a
=
tf
.
nn
.
relu
(
tf
.
nn
.
conv2d
(
X
,
w
,
# l1a shape=(?, 28, 28, 32)
strides
=
[
1
,
1
,
1
,
1
],
padding
=
'
SAME
'
))
l1
=
tf
.
nn
.
max_pool
(
l1a
,
ksize
=
[
1
,
2
,
2
,
1
],
# l1 shape=(?, 14, 14, 32)
strides
=
[
1
,
2
,
2
,
1
],
padding
=
'
SAME
'
)
l1
=
tf
.
nn
.
dropout
(
l1
,
p_keep_conv
)
l2a
=
tf
.
nn
.
relu
(
tf
.
nn
.
conv2d
(
l1
,
w2
,
# l2a shape=(?, 14, 14, 64)
strides
=
[
1
,
1
,
1
,
1
],
padding
=
'
SAME
'
))
l2
=
tf
.
nn
.
max_pool
(
l2a
,
ksize
=
[
1
,
2
,
2
,
1
],
# l2 shape=(?, 7, 7, 64)
strides
=
[
1
,
2
,
2
,
1
],
padding
=
'
SAME
'
)
l2
=
tf
.
nn
.
dropout
(
l2
,
p_keep_conv
)
l3a
=
tf
.
nn
.
relu
(
tf
.
nn
.
conv2d
(
l2
,
w3
,
# l3a shape=(?, 7, 7, 128)
strides
=
[
1
,
1
,
1
,
1
],
padding
=
'
SAME
'
))
l3
=
tf
.
nn
.
max_pool
(
l3a
,
ksize
=
[
1
,
2
,
2
,
1
],
# l3 shape=(?, 4, 4, 128)
strides
=
[
1
,
2
,
2
,
1
],
padding
=
'
SAME
'
)
l3
=
tf
.
reshape
(
l3
,
[
-
1
,
w4
.
get_shape
().
as_list
()[
0
]])
# reshape to (?, 2048)
l3
=
tf
.
nn
.
dropout
(
l3
,
p_keep_conv
)
l4
=
tf
.
nn
.
relu
(
tf
.
matmul
(
l3
,
w4
))
l4
=
tf
.
nn
.
dropout
(
l4
,
p_keep_hidden
)
pyx
=
tf
.
matmul
(
l4
,
w_o
)
return
pyx
mnist
=
input_data
.
read_data_sets
(
"
MNIST_data/
"
,
one_hot
=
True
)
trX
,
trY
,
teX
,
teY
=
mnist
.
train
.
images
,
mnist
.
train
.
labels
,
mnist
.
test
.
images
,
mnist
.
test
.
labels
trX
=
trX
.
reshape
(
-
1
,
28
,
28
,
1
)
# 28x28x1 input img
teX
=
teX
.
reshape
(
-
1
,
28
,
28
,
1
)
# 28x28x1 input img
X
=
tf
.
placeholder
(
"
float
"
,
[
None
,
28
,
28
,
1
])
Y
=
tf
.
placeholder
(
"
float
"
,
[
None
,
10
])
w
=
init_weights
([
3
,
3
,
1
,
32
])
# 3x3x1 conv, 32 outputs
w2
=
init_weights
([
3
,
3
,
32
,
64
])
# 3x3x32 conv, 64 outputs
w3
=
init_weights
([
3
,
3
,
64
,
128
])
# 3x3x32 conv, 128 outputs
w4
=
init_weights
([
128
*
4
*
4
,
625
])
# FC 128 * 4 * 4 inputs, 625 outputs
w_o
=
init_weights
([
625
,
10
])
# FC 625 inputs, 10 outputs (labels)
p_keep_conv
=
tf
.
placeholder
(
"
float
"
)
p_keep_hidden
=
tf
.
placeholder
(
"
float
"
)
py_x
=
model
(
X
,
w
,
w2
,
w3
,
w4
,
w_o
,
p_keep_conv
,
p_keep_hidden
)
cost
=
tf
.
reduce_mean
(
tf
.
nn
.
softmax_cross_entropy_with_logits
(
py_x
,
Y
))
train_op
=
tf
.
train
.
RMSPropOptimizer
(
0.001
,
0.9
).
minimize
(
cost
)
predict_op
=
tf
.
argmax
(
py_x
,
1
)
# Launch the graph in a session
with
tf
.
Session
()
as
sess
:
# you need to initialize all variables
tf
.
initialize_all_variables
().
run
()
for
i
in
range
(
50
):
training_batch
=
zip
(
range
(
0
,
len
(
trX
),
batch_size
),
range
(
batch_size
,
len
(
trX
)
+
1
,
batch_size
))
for
start
,
end
in
training_batch
:
sess
.
run
(
train_op
,
feed_dict
=
{
X
:
trX
[
start
:
end
],
Y
:
trY
[
start
:
end
],
p_keep_conv
:
0.8
,
p_keep_hidden
:
0.5
})
test_indices
=
np
.
arange
(
len
(
teX
))
# Get A Test Batch
np
.
random
.
shuffle
(
test_indices
)
test_indices
=
test_indices
[
0
:
test_size
]
w_out
=
sess
.
run
(
w
)
print
(
i
,
np
.
mean
(
np
.
argmax
(
teY
[
test_indices
],
axis
=
1
)
==
sess
.
run
(
predict_op
,
feed_dict
=
{
X
:
teX
[
test_indices
],
p_keep_conv
:
1.0
,
p_keep_hidden
:
1.0
})))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment