Skip to content
Snippets Groups Projects
Commit d331a533 authored by GIngesson's avatar GIngesson
Browse files

Upload new file

parent ca49b651
No related branches found
No related tags found
No related merge requests found
# -*- coding: utf-8 -*-
# cd DL/Tensorflow_examples/examples/3_NeuralNetworks python execfile("autoencoder_eval_3dim_4lay.py")
""" Auto Encoder Example.
Using an auto encoder on MNIST handwritten digits.
References:
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based
learning applied to document recognition." Proceedings of the IEEE,
86(11):2278-2324, November 1998.
Links:
[MNIST Dataset] http://yann.lecun.com/exdb/mnist/
"""
from __future__ import division, print_function, absolute_import
from mpl_toolkits.mplot3d import Axes3D
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
plt.ion()
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# Parameters
training_epochs = 150
batch_size = 256
display_step = 1
examples_to_show = 10
total_batch = int(mnist.train.num_examples/batch_size)
learning_rate = 0.01;
# Network Parameters
n_hidden_1 = 64 # 1st layer num features
n_hidden_2 = 64 # 2nd layer num features
n_hidden_3 = 36 # 2nd layer num features
n_hidden_4 = 3 # 3rd layer num features
n_input = 784 # MNIST data input (img shape: 28*28)
x1 = np.zeros(1000)
x2 = np.zeros(1000)
x3 = np.zeros(1000)
color = np.zeros(1000)
# tf Graph input (only pictures)
X = tf.placeholder("float", [None, n_input])
weights = {
'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'encoder_h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])),
'encoder_h4': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_4])),
'decoder_h1': tf.Variable(tf.random_normal([n_hidden_4, n_hidden_3])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_2])),
'decoder_h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
'decoder_h4': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])),
'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b4': tf.Variable(tf.random_normal([n_input])),
}
# Building the encoder
def encoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
# Decoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
biases['encoder_b3']))
layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['encoder_h4']),
biases['encoder_b4']))
return layer_4
# Building the decoder
def decoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
# Decoder Hidden layer with sigmoid activation
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
biases['decoder_b3']))
layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']),
biases['decoder_b4']))
return layer_4
# Construct model
encoder_op = encoder(X)
decoder_op = decoder(encoder_op)
# Prediction
y_pred = decoder_op
# Targets (Labels) are the input data.
y_true = X
# Define loss and optimizer, minimize the squared error
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)
# Initializing the variables
init = tf.initialize_all_variables()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
total_batch = int(mnist.train.num_examples/batch_size)
# Training cycle
for epoch in range(training_epochs):
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1),
"cost=", "{:.9f}".format(c))
example_pic = mnist.test.images
hidden_layer_output = sess.run(encoder(example_pic))
for i in range(1000):
x1[i] = hidden_layer_output[i][0]
x2[i] = hidden_layer_output[i][1]
x3[i] = hidden_layer_output[i][2]
tmp = mnist.test.labels[i]
tmp = np.where(tmp > 0)[0][0]
color[i] = tmp
fig = plt.figure(100)
ax = fig.add_subplot(111, projection='3d')
cm = plt.get_cmap('gist_rainbow')
ax.scatter(x1[np.logical_or(color == 0,0)],x2[np.logical_or(color == 0,0)],x3[np.logical_or(color == 0,0)],marker='o',c = cm(0), label='0')
ax.scatter(x1[np.logical_or(color == 1,0)],x2[np.logical_or(color == 1,0)],x3[np.logical_or(color == 1,0)],marker='o',c = cm(0.1), label='1')
ax.scatter(x1[np.logical_or(color == 2,0)],x2[np.logical_or(color == 2,0)],x3[np.logical_or(color == 2,0)],marker='o',c = cm(0.2), label='2')
ax.scatter(x1[np.logical_or(color == 3,0)],x2[np.logical_or(color == 3,0)],x3[np.logical_or(color == 3,0)],marker='o',c = cm(0.3), label='3')
ax.scatter(x1[np.logical_or(color == 4,0)],x2[np.logical_or(color == 4,0)],x3[np.logical_or(color == 4,0)],marker='o',c = cm(0.4), label='4')
ax.scatter(x1[np.logical_or(color == 5,0)],x2[np.logical_or(color == 5,0)],x3[np.logical_or(color == 5,0)],marker='o',c = cm(0.5), label='5')
ax.scatter(x1[np.logical_or(color == 6,0)],x2[np.logical_or(color == 6,0)],x3[np.logical_or(color == 6,0)],marker='o',c = cm(0.6), label='6')
ax.scatter(x1[np.logical_or(color == 7,0)],x2[np.logical_or(color == 7,0)],x3[np.logical_or(color == 7,0)],marker='o',c = cm(0.7), label='7')
ax.scatter(x1[np.logical_or(color == 8,0)],x2[np.logical_or(color == 8,0)],x3[np.logical_or(color == 8,0)],marker='o',c = cm(0.8), label='8')
ax.scatter(x1[np.logical_or(color == 9,0)],x2[np.logical_or(color == 9,0)],x3[np.logical_or(color == 9,0)],marker='o',c = cm(0.9), label='9')
ax.set_xlabel('f_1')
ax.set_ylabel('f_2')
ax.set_zlabel('f_3')
plt.legend(loc='upper left', numpoints=1, ncol=3, fontsize=8, bbox_to_anchor=(0, 0))
plt.pause(0.05)
tmp = mnist.test.labels[i]
tmp = np.where(tmp > 0)[0][0]
color[i] = tmp
example_pic = mnist.test.images
hidden_layer_output = sess.run(encoder(example_pic))
w1 = sess.run(weights['encoder_h1'])
w2 = sess.run(weights['encoder_h2'])
w3 = sess.run(weights['encoder_h3'])
print(sess.run(encoder(example_pic)))
print("Optimization Finished!")
#Applying encode and decode over test set
encode_decode = sess.run(
y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
#Compare original images with their reconstructions
plt.figure(10)
f, a = plt.subplots(2, 10, figsize=(10, 2))
for i in range(examples_to_show):
a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)),cmap='Greys_r')
a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)),cmap='Greys_r')
f.show()
#plt.draw()
#plt.waitforbuttonpress()
for i in range(1000):
x1[i] = hidden_layer_output[i][0]
x2[i] = hidden_layer_output[i][1]
x3[i] = hidden_layer_output[i][2]
tmp = mnist.test.labels[i]
tmp = np.where(tmp > 0)[0][0]
color[i] = tmp
plt.figure(3)
w1_t = np.transpose(w1);
for i in range(64):
plt.subplot(8,8,i+1)
plt.imshow(np.reshape(w1_t[i], (28, 28)),cmap='Greys_r')
plt.figure(4)
w2_t = np.transpose(w2);
for i in range(64):
plt.subplot(8,8,i+1)
plt.imshow(np.reshape(w2_t[i], (8, 8)),cmap='Greys_r')
plt.show()
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x1, x2, x3, c = color, marker='o')
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment