Skip to content
Snippets Groups Projects
Commit c63be83a authored by Fredrik Bagge Carlsson's avatar Fredrik Bagge Carlsson
Browse files

tr back

parent cb1df5f1
No related branches found
No related tags found
No related merge requests found
clear;
close all;
clc;
fs = 24414;
chunks = 2048;
dt = chunks/fs;
[Bf, Af] = butter(3,8000/fs); % filter vectors
%% Setup objects
% Initialize localization models using braodband and subband settings
dObj = dataObject([],fs,10,2);
% Settings for subband approach
par_sub = genParStruct('cc_bBroadband',0,'cc_wSizeSec',winSec,...
'cc_hSizeSec',winSec/2,'cc_maxDelaySec',1.25e-3,...
'fb_lowFreqHz',fLowHz,'fb_highFreqHz',fHighHz,...
'fb_nERBs',1,'ihc_method','none',...
'loc_NSources',nSpeakers(hh));
% Initialize localization models using braodband and subband settings
mObj = manager(dObj,'localization',par_sub);
%% Model parameters
sigma_w = 1;
Q = [2/4*dt^4, 1/2*dt^3; 1/2*dt^3, dt^2]*sigma_w; % Process noise covariance
R = 1; % Measurement noise covariance
x = [0; 0]; % Initial state
P = [10, 0; 0, 10]; % Initial state covariance
A = [1, dt; 0, 1]; % System matrix
c = [1; 0]; % Output vector
% Check definiteness of covariance matrices
if ~all(eig(Q) > 0) || ~all(eig(R) > 0) || ~all(eig(A) > 0)
error('All covariance matrices have to be positive definite.');
end
%% Initialization
% Add necessary paths
addpath('./tools');
addpath('./ekfukf-toolbox');
figure(1)
N = 1; % The number of steps to run this stuff.
% Initialize posterior mean and covariance
posteriorMean = zeros(size(A, 1), N);
posteriorCovariance = zeros(size(A, 1), size(A, 1), N);
% =======================================================
% Main loop - Perform localization and tracking
% =======================================================
tic();
t_old = toc();
for l = 1:N
audio = get_audio();
t_new = toc();
dti = t_new - t_old();
% Request processing
mObj.processSignal(audio);
azimEst = dObj.localization{1}.Data(end,1); % There might be an issue with several sources here!
% Perform Kalman filter prediction and update, TODO: consider changing this
% crappy filter for a PF
Qi = [1/4*dti^4+1e-6, 1/2*dti^3; 1/2*dti^3, dti^2]*sigma_w; % Process noise covariance
Ai = [1, dti; 0, 1];
[x, P] = kf_predict(x, P, Ai, Qi);
[x, P] = kf_update(x, P, azimEst, c', R);
posteriorMean(:, l) = x;
posteriorCovariance(:, :, l) = P;
%pause(max0))
t_old = t_new;
end
% Plot measurements
subplot(2, nFiles / 2, k);
timeAxis = linspace(0, nSamples / fsHz, nFrames);
plot(timeAxis, measuredLocations, 'x', 'LineWidth', 2);
axis([0, nSamples / fsHz, -90, 90]);
xlabel('Time / s');
ylabel('Azimuth / deg');
grid on; hold on;
plot(timeAxis, posteriorMean(1, :), 'g', 'LineWidth', 2);
% Plot ground truth
plot(timeAxis, gtTrajectory, 'r--', 'LineWidth', 2);
legend('Measurements', 'Estimated trajectory', 'Ground truth');
% Compute RMSE
rmse = sqrt(sum((posteriorMean(1, :) - gtTrajectory).^2) ./ nFrames);
if ~strcmpi(noiseType, 'none')
title([upper(soundType), ', ', upper(noiseType), ' NOISE AT ', ...
num2str(snr), ' dB SNR, ', 'RMSE: ', num2str(rmse), '°']);
else
title([upper(soundType), ', NO NOISE, ', 'RMSE: ', ...
num2str(rmse), '°']);
end
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment