Skip to content
Snippets Groups Projects
Commit f16b55b4 authored by Fredrik Bagge Carlsson's avatar Fredrik Bagge Carlsson
Browse files

mhm

parent f60695be
No related branches found
No related tags found
No related merge requests found
......@@ -2,31 +2,12 @@ clear;
close all;
clc;
% To be modified
% % % % % %% Request interaural time differences (ITDs)
% % % % % requests = {'itd'};
% % % % %
% % % % % % Parameters of the auditory filterbank processor
% % % % % fb_type = 'gammatone';
% % % % % fb_lowFreqHz = 80;
% % % % % fb_highFreqHz = 8000;
% % % % % fb_nChannels = 32;
% % % % %
% % % % % % Parameters of innerhaircell processor
% % % % % ihc_method = 'dau';
% % % % %
% % % % % % Parameters of crosscorrelation processor
% % % % % cc_wSizeSec = 0.02;
% % % % % cc_hSizeSec = 0.01;
% % % % % cc_wname = 'hann';
% % % % %
% % % % % % Summary of parameters
% % % % % par = genParStruct('fb_type',fb_type,'fb_lowFreqHz',fb_lowFreqHz,...
% % % % % 'fb_highFreqHz',fb_highFreqHz,'fb_nChannels',fb_nChannels,...
% % % % % 'ihc_method',ihc_method,'cc_wSizeSec',cc_wSizeSec,...
% % % % % 'cc_hSizeSec',cc_hSizeSec,'cc_wname',cc_wname);
fs = 24414;
chunks = 2048;
dt = chunks/fs;
[Bf, Af] = butter(3,8000/fs); % filter vectors
%% Setup objects
% Initialize localization models using braodband and subband settings
......@@ -43,9 +24,6 @@ par_sub = genParStruct('cc_bBroadband',0,'cc_wSizeSec',winSec,...
mObj = manager(dObj,'localization',par_sub);
%% Model parameters
fs = 24414;
chunks = 2048;
dt = chunks/fs;
sigma_w = 1;
Q = [2/4*dt^4, 1/2*dt^3; 1/2*dt^3, dt^2]*sigma_w; % Process noise covariance
......@@ -53,8 +31,8 @@ R = 1; % Measurement noise covariance
x = [0; 0]; % Initial state
P = [10, 0; 0, 10]; % Initial state covariance
A = [1, dt; 0, 1]; % System matrix (do not change)
c = [1; 0]; % Output vector (do not change)
A = [1, dt; 0, 1]; % System matrix
c = [1; 0]; % Output vector
% Check definiteness of covariance matrices
if ~all(eig(Q) > 0) || ~all(eig(R) > 0) || ~all(eig(A) > 0)
......@@ -72,7 +50,7 @@ addpath('./ekfukf-toolbox');
figure(1)
N = 100;
N = 100; % The number of steps to run this stuff.
% Initialize posterior mean and covariance
posteriorMean = zeros(size(A, 1), N);
......@@ -82,20 +60,28 @@ posteriorCovariance = zeros(size(A, 1), size(A, 1), N);
% =======================================================
% Main loop - Perform localization and tracking
% =======================================================
tic();
t_old = toc();
for l = 1:N
audio = get_audio();
t_new = toc();
dti = t_new - t_old();
% Request processing
mObj.processSignal(audio);
azimEst = dObj.localization{1}.Data(end,1); % There might be an issue with several sources here!
% Perform Kalman filter prediction and update, TODO: consider changing this
% crappy filter for a PF
[x, P] = kf_predict(x, P, A, Q);
Qi = [1/4*dti^4+1e-6, 1/2*dti^3; 1/2*dti^3, dti^2]*sigma_w; % Process noise covariance
Ai = [1, dti; 0, 1];
[x, P] = kf_predict(x, P, Ai, Qi);
[x, P] = kf_update(x, P, azimEst, c', R);
posteriorMean(:, l) = x;
posteriorCovariance(:, :, l) = P;
pause(0.5)
pause(max(,0))
t_old = t_new;
end
% Plot measurements
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment