Skip to content
Snippets Groups Projects
Select Git revision
  • 5e8584b0d15a1b1dbe05b159b842fb6bafa77a6b
  • main default protected
  • rosification
  • refactoring
  • pp
  • mpc
  • realtimelogplotter
  • alv
  • gitlab_ci_podman
  • restructuring
  • viz_fix
11 results

TODOS

Blame
  • 03-model.tex 19.40 KiB
    This section introduces the receiver model used in the rest of the
    paper. Specifically, Section~\ref{sec:gps:phy} describes the physics
    behind the model and Section~\ref{sec:gps:mod} discusses our modelling
    choices.
    
    \subsection{GPS physics}
    \label{sec:gps:phy}
    
    GPS sensors locate themselves through a process called
    \emph{trilateration}~\cite{bib:gps-book}. This process consists in
    measuring the distance from 4 or more points in space (satellites),
    whose position is known. Given the distance measurements, the GPS
    sensor then performs a least square estimation to determine its
    current position. Figure~\ref{fig:globe} shows an example with five
    satellites. To correctly estimate the current position, the GPS
    receiver must measure the distance from $s_1, s_2, s_3$ and $s_4$.
    Additionally, measuring the distance from $s_5$ is not necessary, but
    improves the position accuracy.
    
    The GPS framework includes (circa) 30 satellites. These satellites
    orbit around the Earth following known trajectories. While orbiting,
    they broadcast periodic signals that encode a set of parameters,
    called \emph{ephemeris data}. The emphemeris data describe the
    satellites' orbits (see for example the trajectory of satelite $s_3$
    in Figure~\ref{fig:globe}), and therefore allow the GPS receiver to
    accurately determine their position in time. The satellite
    trajectories are not constant in time, due to uncertainties and
    disturbances, like corrections for collision avoidance.
    
    \begin{figure}
    \centering
    \scalebox{0.6}{%
    \begin{pspicture}(-5,-4)(6,6)
    \psset{RotX=-23, RotZ=30, PHI=46.5833, THETA=0.3333,
      visibility=false, Decran=15,
      path=/usr/share/texlive/texmf-dist/tex/generic/pst-geo/data}
    % map
    \WorldMapThreeD[circles=false, blueEarth=false]
    \WorldMapThreeD[circles=false, visibility=true, opacity=0.8]
    % s1
    \pscircle[linecolor=red, fillcolor=red, fillstyle=solid](-3,5){0.1}
    \psline[linecolor=red, linewidth=0.1](0.8,0.8)(-3,5)
    \rput[tl](-2.75,5.2){\fontsize{16pt}{16pt}\selectfont\textcolor{red}{$s_1$}}
    % s2
    \pscircle[linecolor=red, fillcolor=red, fillstyle=solid](5.5,5.5){0.1}
    \psline[linecolor=red, linewidth=0.1](0.78,0.83)(5.5,5.5)
    \rput[tl](5.5,5.3){\fontsize{16pt}{16pt}\selectfont\textcolor{red}{$s_2$}}
    % s3
    \pscircle[linecolor=red, fillcolor=red, fillstyle=solid](5,3){0.1}
    \psline[linecolor=red, linewidth=0.1](0.75,0.82)(5,3)
    \rput[tl](4.8,2.8){\fontsize{16pt}{16pt}\selectfont\textcolor{red}{$s_3$}}
    % s4
    \pscircle[linecolor=red, fillcolor=red, fillstyle=solid](1.25,5){0.1}
    \psline[linecolor=red, linewidth=0.1](0.78,0.82)(1.25,5)
    \rput[tl](1.45,5.15){\fontsize{16pt}{16pt}\selectfont\textcolor{red}{$s_4$}}
    % s5
    \pscircle[linecolor=red, fillcolor=red, fillstyle=solid](0.5,4.5){0.1}
    \psline[linecolor=red, linestyle=dashed, linewidth=0.1](0.8,0.82)(0.5,4.5)
    \rput[tl](-0.1,4.5){\fontsize{16pt}{16pt}\selectfont\textcolor{red}{$s_5$}}
    % curve for satelite s3
    \pscurve[linecolor=red, linestyle=dotted]{->}(5,3)(5.75,3.2)(4,1.5)
    % delay and distance for s1
    \rput[tl](-4.4,4.3){\fontsize{16pt}{16pt}\selectfont\textcolor{red}{$\{\Delta_1, d_1\}$}}
    \end{pspicture}}
    \caption{Trilateration: GPS receiver and satellites.}
    \label{fig:globe}
    \end{figure}
    
    The ephemeris data expire after 30 minutes, i.e., after 30 minutes
    they are not considered valid anymore. To correctly estimate the