Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
A
AS_activity_recognition
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Max Nyberg Carlsson
AS_activity_recognition
Commits
95b13352
Commit
95b13352
authored
2 years ago
by
David Ohlin
Browse files
Options
Downloads
Patches
Plain Diff
Finalized version
parent
a3441066
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
frequency_powerFINAL.jl
+104
-0
104 additions, 0 deletions
frequency_powerFINAL.jl
with
104 additions
and
0 deletions
frequency_powerFINAL.jl
0 → 100644
+
104
−
0
View file @
95b13352
using
Pkg
;
Pkg
.
activate
(
"."
);
using
FFTW
,
DSP
,
Plots
,
DelimitedFiles
using
REPL
.
TerminalMenus
# Plot heatmap of spectrogram:
function
plot_spectrogram
(
s
)
n
=
80
#window size
noverlap
=
n
-
1
#window overlap
spec
=
spectrogram
(
s
,
n
,
noverlap
)
power
=
spec
.
power
./
sum
(
spec
.
power
,
dims
=
1
)
heatmap
(
spec
.
time
,
spec
.
freq
,
power
,
size
=
(
1500
,
800
),
title
=
"Spectrogram"
)
end
# Get frequency with greatest power:
function
get_spectrogram
(
s
)
n
=
80
#window size
noverlap
=
n
-
1
#window overlap
spec
=
spectrogram
(
s
,
n
,
noverlap
)
power
=
spec
.
power
./
sum
(
spec
.
power
,
dims
=
1
)
power
=
0.5
*
10
*
maxPower
(
power
)
/
41
#adjust to get correct unit
return
power
end
# Get index of largest value in each column:
function
maxPower
(
data
)
l
=
size
(
data
)[
2
]
index
=
zeros
(
l
,
1
)
for
i
=
1
:
l
index
[
i
]
=
findmax
(
data
[
:
,
i
])[
2
]
end
return
index
end
#Moving mean function for smoothing magnitude of acceleration in time domain:
movmean
(
x
,
n
)
=
conv
(
x
,
ones
(
Int64
,
n
))
/
n
# Load data:
function
read_data
(
dataname
,
sensor
)
return
readdlm
(
"data/
$(dataname)
_
$(sensor)
.txt"
,
Float64
)
end
read_acc
(
dataname
)
=
read_data
(
dataname
,
"acc"
)
normalize_data
(
A
)
=
sqrt
.
(
sum
(
A
.^
2
,
dims
=
2
))
#Euclidean norm of data
decimate
(
v
)
=
resample
(
v
,
0.1
)
#decimate data
mean
(
v
)
=
sum
(
v
)
/
length
(
v
)
detrend
(
v
)
=
v
.-
mean
(
v
)
#remove mean
xyz
(
data
)
=
data
[
:
,
2
:
4
]
#extract relevant components
# Acceleration data pipieline:
acc_data
(
dataname
)
=
read_acc
(
dataname
)
|>
xyz
|>
normalize_data
|>
vec
|>
decimate
# Spectrogram calculation:
acc_frequency
(
dataname
)
=
acc_data
(
dataname
)
|>
detrend
|>
get_spectrogram
acc_spectrogram
(
dataname
)
=
acc_data
(
dataname
)
|>
detrend
|>
plot_spectrogram
# Moving average of magnitude of acceleration:
n_smooth
=
80
#kernel size
acc_power
(
dataname
)
=
acc_data
(
dataname
)
|>
x
->
movmean
(
x
,
n_smooth
)
|>
x
->
x
[
n_smooth
:
end
-
n_smooth
+
1
]
function
menuplot
()
datasets
=
[
"jogging1"
,
"jogging2"
,
"mix1"
,
"standing1"
,
"walking1"
,
"walking2"
]
# Menu:
keybindings
=
[
Char
(
'0'
+
i
)
for
i
in
1
:
length
(
datasets
)]
menu
=
RadioMenu
(
datasets
,
pagesize
=
min
(
length
(
datasets
),
10
),
keybindings
=
keybindings
)
choice
=
request
(
"Please choose a dataset (up/down or 1-9):"
,
menu
)
# Get data:
frequency
=
acc_frequency
(
datasets
[
choice
])
#get frequency data
power
=
acc_power
(
datasets
[
choice
])
#get magnitude data
plot_heatmap
=
acc_spectrogram
(
datasets
[
choice
])
#plot spectrogram heatmap
# Decide activity:
power_activity
=
1
*
(
power
.>
11.5
)
+
1
*
(
power
.>
10
)
frequency_activity
=
1
*
(
frequency
.>
2.2
)
+
1
*
(
frequency
.>
1.0
)
# Get aggregate activity:
activity
=
zeros
(
length
(
power_activity
),
1
)
activity
[
1
]
=
frequency_activity
[
1
]
#frequency data looks slightly more reliable
for
t
=
2
:
length
(
power_activity
)
if
power_activity
[
t
]
==
frequency_activity
[
t
]
activity
[
t
]
=
power_activity
[
t
]
#update activity if datasets agree
else
activity
[
t
]
=
activity
[
t
-
1
]
#otherwise continue previous activity
end
end
# Plotting:
plot_PA
=
plot
(
power_activity
,
size
=
(
1500
,
800
),
title
=
"Activity (magnitude)"
)
plot_FA
=
plot
(
frequency_activity
,
size
=
(
1500
,
800
),
title
=
"Activity (frequency)"
)
plot_activity
=
plot
(
activity
,
size
=
(
1500
,
800
),
title
=
"Activity (aggregate)"
)
plot_frequency
=
plot
(
frequency
,
size
=
(
1500
,
800
),
title
=
"Frequency"
)
plot_power
=
plot
(
power
,
size
=
(
1500
,
800
),
title
=
"Magnitude"
)
display
(
plot
(
plot_heatmap
,
plot_frequency
,
plot_power
,
plot_PA
,
plot_FA
,
plot_activity
))
# Combined plots:
#plot(frequency,size=(1500,800),label="Frequency")
#plot!(activity,label="Activity")
#plot(power.-9.8,size=(1500,800),label="Magnitude")
#plot!(activity,label="Activity")
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment