Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
P
Pendulums
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
BoB
Pendulums
Commits
e23b2443
Commit
e23b2443
authored
7 years ago
by
BoB
Browse files
Options
Downloads
Patches
Plain Diff
Euler-Lagrange modeling
parent
f479a285
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
.gitignore
+1
-0
1 addition, 0 deletions
.gitignore
modeling.pdf
+0
-0
0 additions, 0 deletions
modeling.pdf
modeling.tex
+72
-0
72 additions, 0 deletions
modeling.tex
with
73 additions
and
0 deletions
.gitignore
+
1
−
0
View file @
e23b2443
...
...
@@ -23,3 +23,4 @@
*.synctex.gz
*.bak
*.mp4
*.ps
This diff is collapsed.
Click to expand it.
modeling.pdf
0 → 100644
+
0
−
0
View file @
e23b2443
File added
This diff is collapsed.
Click to expand it.
modeling.tex
0 → 100644
+
72
−
0
View file @
e23b2443
\documentclass
[12pt,a4paper]
{
report
}
\usepackage
[utf8]
{
inputenc
}
\usepackage
{
amsmath
}
\usepackage
{
amsfonts
}
\usepackage
{
amssymb
}
\usepackage
{
tikz
}
\usetikzlibrary
{
patterns,angles,calc,quotes
}
\begin{document}
\section*
{
Dynamics from Euler-Lagrange equations
}
\begin{figure}
\begin{center}
\begin{tikzpicture}
[thick,>=latex]
\begin{scope}
%\draw[step=1cm,gray,very thin] (-1,-1) grid (4,5);
\draw
[->,thick]
(-0.1,0) -- (4,0) node[anchor=west]
{
x
}
;
\draw
[->,thick]
(0,-0.1) -- (0,4.5) node[anchor=south]
{
y
}
;
\coordinate
(cart) at (2,0);
\coordinate
(mass1) at (
$
(
cart
)
+
(
104
:
4
)
$
);
\coordinate
(mass2) at (
$
(
cart
)
+
(
127
:
2
.
5
)
$
);
\coordinate
(upp) at (
$
(
cart
)
+
(
0
,
5
)
$
);
\draw
[draw=black,fill=black]
(cart) circle (.1cm) node (cart)
{}
;
\draw
[dashed]
(cart.center) -- (upp)
{}
;
\node
at (cart.south) [anchor=north]
{$
(
x,
0
)
$}
;
\draw
(cart.center) -- (mass1) node[midway,xshift=2mm,yshift=5mm] (mid1)
{}
;
\draw
[draw=black,fill=white]
(mass1.center) circle (.15cm);
\node
at (mass1.north) [anchor=south,xshift=1mm,yshift=1mm]
{
$
(
x
_
1
,y
_
1
)
$}
;
\pic
["$\theta_1$", draw=black, ->, angle eccentricity=1.15, angle radius=2.2cm]
{
angle = upp--cart--mass1
}
;
\draw
(cart.center) -- (mass2) node[midway,xshift=1mm,yshift=3mm] (mid2)
{}
;
\draw
[draw=black,fill=white]
(mass2.center) circle (.15cm);
\node
at (mass2.north) [anchor=south,xshift=1mm,yshift=1mm]
{
$
(
x
_
2
,y
_
2
)
$}
;
%\pic [draw, ->, angle eccentricity=1] {angle = upp--cart--mass2};
\pic
["$\theta_2\;$", draw=black, ->, angle eccentricity=1.25, angle radius=1.2cm]
{
angle = upp--cart--mass2
}
;
\end{scope}
\end{tikzpicture}
\label
{
fig01
}
\caption
{
Two pendulums on a moving cart
}
\end{center}
\end{figure}
Two pendulums with lengths
$
l
_
1
$
and
$
l
_
2
$
and masses
$
m
_
1
$
and
$
m
_
2
$
are mounted on a moving cart with mass
$
M
$
, see Figure~
\ref
{
fig01
}
. Introduce
$
L
=
T
-
V
$
where kinetick and potential energies are given by
\begin{align}
T
&
=
\frac
{
1
}{
2
}
M
\dot
x
^
2 +
\frac
{
1
}{
2
}
m
_
1(
\dot
x
_
1
^
2 +
\dot
y
_
1
^
2) +
\frac
{
1
}{
2
}
m
_
2(
\dot
x
_
2
^
2 +
\dot
y
_
2
^
2)
\\
V
&
= m
_
1gl
_
1 c
_
1 + m
_
2gl
_
2c
_
2
\end{align}
where
$
c
_
i
$
and
$
s
_
i
$
and short for
$
\cos
(
\theta
_
i
)
$
and
$
\sin
(
\theta
_
i
)
$
,
$
i
=
1
,
2
$
respectively.
Note that
$
x
_
i
=
x
-
l
_
is
_
i
$
and
$
y
_
i
=
l
_
ic
_
i
$
.
The Euler-Lagrange equations
\begin{align}
\begin{cases}
0=
\dfrac
{
\partial
L
}{
\partial
\theta
_
i
}
-
\dfrac
{
d
}{
dt
}
\left
(
\dfrac
{
\partial
L
}{
\partial
\dot
{
\theta
}_
i
}
\right
),
&
i=1,2
\\
F=
\dfrac
{
\partial
L
}{
\partial
x
}
-
\dfrac
{
d
}{
dt
}
\left
(
\dfrac
{
\partial
L
}{
\partial
\dot
{
x
}}
\right
).
\end{cases}
\end{align}
give after some calculations that
\begin{align}
l
_
i
\ddot
\theta
_
i
&
= gs
_
i + c
_
i
\ddot
x,
\quad
i=1,2
\\
F
&
=M
\ddot
x + m
_
1(
\ddot
x - l
_
1c
_
1
\ddot
\theta
_
1 + l
_
1s
_
1
\dot
{
\theta
}_
1
^
2) + m
_
2(
\ddot
x - l
_
2c
_
2
\ddot
\theta
_
2+ l
_
2s
_
2
\dot
{
\theta
}_
2
^
2).
\end{align}
For
$
m
_
i
\approx
0
$
and setting
$
u
=
\frac
{
F
}{
M
}$
, this simplifies to
\begin{align}
l
_
1
\ddot
\theta
_
1
&
= g
\sin
(
\theta
_
1) +
\cos
(
\theta
_
1) u
\\
l
_
2
\ddot
\theta
_
2
&
= g
\sin
(
\theta
_
2) +
\cos
(
\theta
_
2) u
\\
\ddot
x
&
= u
\end{align}
\end{document}
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment