Skip to content
Snippets Groups Projects
Commit e23b2443 authored by BoB's avatar BoB
Browse files

Euler-Lagrange modeling

parent f479a285
Branches
No related tags found
No related merge requests found
......@@ -23,3 +23,4 @@
*.synctex.gz
*.bak
*.mp4
*.ps
File added
\documentclass[12pt,a4paper]{report}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{tikz}
\usetikzlibrary{patterns,angles,calc,quotes}
\begin{document}
\section*{Dynamics from Euler-Lagrange equations}
\begin{figure}
\begin{center}
\begin{tikzpicture}[thick,>=latex]
\begin{scope}
%\draw[step=1cm,gray,very thin] (-1,-1) grid (4,5);
\draw[->,thick] (-0.1,0) -- (4,0) node[anchor=west]{x};
\draw[->,thick] (0,-0.1) -- (0,4.5) node[anchor=south]{y};
\coordinate (cart) at (2,0);
\coordinate (mass1) at ($(cart) + (104:4)$);
\coordinate (mass2) at ($(cart) + (127:2.5)$);
\coordinate (upp) at ($(cart) + (0,5)$);
\draw[draw=black,fill=black] (cart) circle (.1cm) node (cart){};
\draw[dashed] (cart.center) -- (upp) {};
\node at (cart.south) [anchor=north] {$(x,0)$};
\draw (cart.center) -- (mass1) node[midway,xshift=2mm,yshift=5mm] (mid1) {};
\draw[draw=black,fill=white] (mass1.center) circle (.15cm);
\node at (mass1.north) [anchor=south,xshift=1mm,yshift=1mm] { $(x_1,y_1)$};
\pic["$\theta_1$", draw=black, ->, angle eccentricity=1.15, angle radius=2.2cm]
{angle = upp--cart--mass1};
\draw (cart.center) -- (mass2) node[midway,xshift=1mm,yshift=3mm] (mid2) {};
\draw[draw=black,fill=white] (mass2.center) circle (.15cm);
\node at (mass2.north) [anchor=south,xshift=1mm,yshift=1mm] { $(x_2,y_2)$};
%\pic [draw, ->, angle eccentricity=1] {angle = upp--cart--mass2};
\pic["$\theta_2\;$", draw=black, ->, angle eccentricity=1.25, angle radius=1.2cm]
{angle = upp--cart--mass2};
\end{scope}
\end{tikzpicture}
\label{fig01}
\caption{Two pendulums on a moving cart}
\end{center}
\end{figure}
Two pendulums with lengths $l_1$ and $l_2$ and masses $m_1$ and $m_2$ are mounted on a moving cart with mass $M$, see Figure~\ref{fig01}. Introduce $L = T - V$ where kinetick and potential energies are given by
\begin{align}
T &= \frac{1}{2}M\dot x^2 + \frac{1}{2}m_1(\dot x_1^2 + \dot y_1^2) + \frac{1}{2}m_2(\dot x_2^2 + \dot y_2^2)\\
V &= m_1gl_1 c_1 + m_2gl_2c_2
\end{align}
where $c_i$ and $s_i$ and short for $\cos(\theta_i)$ and $\sin(\theta_i)$, $i=1,2$ respectively.
Note that $x_i = x-l_is_i$ and $y_i = l_ic_i$.
The Euler-Lagrange equations
\begin{align}
\begin{cases}
0=\dfrac{\partial L}{\partial \theta_i} - \dfrac{d}{dt}\left(\dfrac{\partial L}{\partial \dot{\theta}_i} \right), & i=1,2 \\
F=\dfrac{\partial L}{\partial x} - \dfrac{d}{dt}\left(\dfrac{\partial L}{\partial \dot{x}} \right).
\end{cases}
\end{align}
give after some calculations that
\begin{align}
l_i \ddot \theta_i &= gs_i + c_i \ddot x, \quad i=1,2\\
F&=M\ddot x + m_1(\ddot x - l_1c_1\ddot \theta_1 + l_1s_1\dot{ \theta}_1^2) + m_2(\ddot x - l_2c_2\ddot \theta_2+ l_2s_2\dot{ \theta}_2^2).
\end{align}
For $m_i\approx 0$ and setting $u = \frac{F}{M}$, this simplifies to
\begin{align}
l_1 \ddot \theta_1 &= g\sin(\theta_1) + \cos(\theta_1) u\\
l_2 \ddot \theta_2 &= g\sin(\theta_2) + \cos(\theta_2) u\\
\ddot x &= u
\end{align}
\end{document}
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment